

Klaus Turowski
(Editor)

Jörg Ackermann
Frank Brinkop
Stefan Conrad
Peter Fettke
Andreas Frick
Elke Glistau
Holger Jaekel
Otto Kotlar
Peter Loos
Heike Mrech
Erich Ortner
Ulrich Raape
Sven Overhage
Stephan Sahm
Andreas Schmietendorf
Thorsten Teschke
Klaus Turowski

Standardized
Specification of
Business
Components

Memorandum of the working group 5.10.3
Component Oriented Business Application
System

February 2002

Gesellschaft für Informatik
Working Group 5.10.3
Component Oriented Business Application Systems

i

Standardized Specification of Business Components

Preface

Traditional engineering disciplines are generally characterized by accepted methodical standards
for notation, nomination and the use of measurements to specify the relevant result of construc-
tion in order to facilitate reusing them in a different context. Hence, only by looking at a con-
structional drawing, an engineer is able to understand the constructive and material properties of
any work piece even though it is new to him. Furthermore, he can reuse these engineering results
as a solution for a problem he is facing in his own context, which might be considerably differ-
ent.

In the field of software engineering and in particular in the field of development of business ap-
plication systems, the situation looks completely different: Component strategies based on ac-
cepted standards are - if at all - only successful in areas that are independent of a specific applica-
tion domain (such as middleware). However, the above mentioned obligatory and accepted me-
thodical standards do not exist. Thus, the change to a software development process which is
based on the reuse of existing solutions is restrained and in this way the efficiency potential of
the industrial production process remains unexploited for the production of software solutions.
For example, there is an ongoing discussion how to specify software components, which notation
should be used and in general, which separate units should be specified. It is evident that this
situation makes it impossible to teach a uniform and standardized theory for the construction of
software components at university or elsewhere. Furthermore the practical advantages for the
process of software development remain unexploited, as well.

Concerning the mentioned problem a first workshop Modeling and Specification of Business
Components took place October 12th, 2000 in Siegen / Germany, hosted by the working group
5.10.3 Component Oriented Business Application Systems by the German Business Information
Systems research community (GI) in the context of the conference Modelling of Business Infor-
mation Systems (MoBIS). It was decided to compose a draft dealing with the standardization of
the specification of business components. The participants were called to contribute to the
memorandum of the same name which finally in this first consolidated version.

On the way, eleven intermediate papers were written, discussed among the authors and presented
to the public – the last during the second workshop Modelling and Specification of Business
Components. Organized by the workgroup 5.10.3, it took place October 5th, 2001 in Bamberg /
Germany during the conference Distributed Information Systems based on Objects, Components
and Agents (vertVIS 2001).

Last changes were made during the workshop Standardization for Specification of Business
Components which was hosted by the working group 5.10.3 together with the university of
Augsburg with friendly support by SAP AG in Walldorf / Germany on December 3rd/4th, 2001.

An electronic version of this memorandum is available on www.fachkomponenten.de. Further-
more, the site contains examples and case studies on specifications of business components ac-
cording to this memorandum, ongoing projects, references to lectures and lecture materials con-
cerning the specification of business components as well as coming events by the working group
5.10.3.

ii

Standardized Specification of Business Components

To finish, we thank all participants and contributors for their engagement, time and articles,
which have made this memorandum possible. Furthermore, many thanks to all those whose or-
ganizational support was crucial to achieve this work, in particular Andreas Krammer and Moritz
Weizmann, who provided the translation.

Augsburg, February 2002

Klaus Turowski

iii

Standardized Specification of Business Components

Index

Abbreviations ...v

Figures...vi

1 Compositional Reuse and Basic Terms ..1

2 Specification and Levels of Specification...3

3 Interface Level...5

3.1 Purpose ..5
3.2 Notation Suggestion (Primary Notation) ..5
3.3 Example (Primary Notation) ..6
3.4 Outlook ...7

4 Behavioral Level ...7

4.1 Purpose ..7
4.2 Notation Suggestion (Primary Notation) ..8
4.3 Supplementary (Secondary) Notation ...8
4.4 Example..8
4.5 Alternative Notations and Outlook...9

5 Coordination Level..10

5.1 Purpose ..10
5.2 Notation Suggestion (Primary Notation) ..10
5.3 Supplementary (Secondary) Notation ...11
5.4 Example..11
5.5 Alternative Notation Methods and Outlook ..12

6 Quality Level..12

6.1 Purpose ..12
6.2 Steps for Quality Specification ..13
6.3 Quality Classes as Frame (Step 1) ...13
6.4 Component Specific Quality Models (Step 2) ..14
6.5 Measurement of the Determined Quality Criteria (Step 3)...15
6.6 Specification of Quality Properties (Step 4)...15

7 Terminology Level ..16

7.1 Purpose ..16
7.2 Notation Suggestion (Primary Notation) ..16
7.3 Example (Primary Notation) ..17
7.4 Complementary (Secondary) Notation ..18
7.5 Example (Secondary Notation) ...18

8 Task Level..18

8.1 Purpose ..18
8.2 Notation Suggestion (Primary Notation) ..19

iv

Standardized Specification of Business Components

8.3 Example (Primary Notation).. 19
8.4 Supplementary (Secondary) Notation ... 20
8.5 Example (Secondary Notation) ... 20

9 Marketing Level .. 20

9.1 Purpose.. 20
9.2 Notation suggestion (Primary Notation) .. 21
9.3 Example (Primary Notation).. 22
9.4 Alternative Notations, Deciding Aspects, Outlook ... 23

Literature.. 24

v

Standardized Specification of Business Components

Abbreviations

CORBA Common Object Request Broker Architecture

COTS Commercial off-the-shelf

CPU Central Processing Unit

DBMS Database management system

DTD Document Type Definition

EJB Enterprise Java Bean

FCM Factor Criteria Metrics Model

GQM Goal/Question/Metric

IDL Interface Definition Language

IEEE Institute of Electrical and Electronics Engineers

ISO International Organization for Standardization

OCL Object Constraint Language

OMG Object Management Group

RDF Resource Description Framework

SQL Structured Query Language

UML Unified Modeling Language

WSDL Web Service Description Language

XML Extensible Markup Language

vi

Standardized Specification of Business Components

Figures
Fig. 1: Division into types of components..2

Fig. 2: Meta scheme of a component model ...2

Fig. 3: Levels and facts to be specified...4

Fig. 4: Example for the use of OMG IDL on the Interface Level..6

Fig. 5: Example for the notation of corresponding terms and types ..7

Fig. 6: Example for the notation of corresponding tasks and services ..7

Fig. 7: Example for the use of OCL on the Behavioral Level...8

Fig. 8: Example for the use of secondary notation on the Behavioral Level9

Fig. 9: Example for the use of OCL extended by temporal operators..11

Fig. 10: Use of secondary notation on the Coordination Level ..12

Fig. 11: Steps to quality specification [ScDu2001] ..13

Fig. 12: Example for the specification of terminology..17

Fig. 13: Example for the specification of business tasks...20

Fig. 14: Example for the specification of business tasks in secondary notation20

1

Standardized Specification of Business Components

1 Compositional Reuse and Basic Terms

Combining off-the-shelf software components offered by different vendors to customer-
individual business application systems is a goal that has been followed-up for a long time
[McIl1968]. By achieving this goal, advantages of individually programmed software with those
of standard, off-the-shelf software could come together. Guiding model as an ideal future sce-
nario is a compositional, plug-and-play like reuse of black-box components whose implementa-
tion remains invisible to users and which can be traded on component markets to be joined to
customer- individual business application systems.

Corresponding to our guiding model, a company, which e.g. needs new software for stock keep-
ing, could buy a suitable software component on the component market and further integrate it
into its business application system with little effort. The relevant market could be an open mar-
ket (defined by the term commercial-off-the-shelf (COTS) Components) or a company’s internal
repository.

According to [FeRT1999, S. 34] the terms component and business component are defined as
follows:

A component consists of different (software) artifacts. It is reusable, self-contained and
marketable, provides services through well-defined interfaces, hides its implementation and
can be deployed in configurations unknown at the time of development.

A (software) artifact can be executable code, included graphics, texts etc., data that describes the
initial state of a component, such as parameters, as well as specification and user documentation
and (automatic) tests.

The criterion of reusability is fulfilled, when a component can be integrated in other software
systems without modification of its (software) artifacts, apart from intended modification possi-
bilities such as parameters.

The criterion of being self-contained is fulfilled, when its parts (i.e. the (software) artifacts) can
be assigned unequivocally in order to distinguish it as a unit from other parts of the system.
Consequently, being self-contained is a precondition for being marketable.

Marketable means that in principle components can be identified as a separate good, so that they
can be traded on an open as well as company internal market.

A business component is a component that offers a certain set of services of a given busi-
ness domain.

A precondition to component based development of application systems by using business com-
ponents is a stable component model. Additionally it seems suitable to distinguish different kinds
of components. Fig. 1 and 2 show an illustration of a distinction between component types and a
meta-schema for the component model.

2

Standardized Specification of Business Components

Fig. 1: Division into types of components

Firstly, components are categorized in simple (but self-contained) and joined components, as
shown in Fig.1. Simple components can be subdivided in system components (serving generic
functions) and business components (provide application specific functions). Joined components
are subdivided in components which can be customized before using them in a specific context
and those, which are ready to use, if necessary in a large number of variants.

Component Connection

Interface Service

Service

1..*

1..*

1..*

1..*
Legend:

: Aggregation

: one to many

: exactly one
1..*

Fig. 2: Meta scheme of a component model

Joined and customizable components are called Component System Framework, when they are
used to realize generic functions and Component Application Framework, when used in an appli-

3

Standardized Specification of Business Components

cation specific context. One kind of customizing frameworks is their combination with simple or
joined system and/or business components. Joined systems or business components are called
Assemblies (an alternative term could be Configurations) in Fig.1. Applications which are ready-
to-use configurations of components have to be differentiated from Assemblies.

The meta-scheme (Fig. 2), which is based on the (strongly simplified) component model, consists
of a central object type COMPONENT. The bill of materials’ like structure that describes its
connection to the exterior is represented by the object type RELATIONSHIP. Towards its inte-
rior, the meta-schema describes the functionality and the tasks a component fulfills with the ob-
ject types (standardized) SERVICE and INTERFACE SERVICE respectively.

As [OrRS1990] describes, besides the standardization of services it is also possible to standard-
ize component attributes making use of data elements in the meta-scheme (Fig. 2). The essential
aspect is that data elements as well as services for an application domain can be standardized
independent of their purpose [OrRS1990].

2 Specification and Levels of Specification

In order to assemble business components with little effort to customer-individual application
systems, it is necessary to establish functional, content related standards. In addition, a methodi-
cal standard has to be set, as intended with this memorandum. It provides the necessary frame-
work, which notations have to be regarded for the specification of business components in order
to simplify their reusability between companies and software developers. This is achieved by
means of a notation mix that is standardized, accepted and well-known by all participating par-
ties.

Specification is defined as a complete, unequivocal and precise description of its external
view that is which services a business component provides under which conditions.

User or author of a specification of a business component can be a variety of persons acting in
different roles, e.g. functional architects, software architects, consultants, buyers, retail agents,
project leaders or software developers who are taking very different roles [Sahm2000]. Examples
for roles that are related to the specification of business components are:

 Configurator: Configuring purchased components.

 Assembler: Installing and distributing self developed or adjusted components in their target
environment.

 Quality Guard: Testing components against their specification, checking content and
 formal correctness of the specification.

 Component Administrator: Filing components in a repository and administrating the differ-
ent versions of the components and establishing classification systems.

As stated in [Turo1999] and [Turo2001], the specification of business components is to be car-
ried out on different description levels (Fig. 3). For all of these levels a specific notation lan-
guage has to be used. The possible notation languages (modeling and description languages) are:

 Mathematical or formal languages (algebra of sets, predicate logic, ...),

 Programming languages (imperative, functional, predicating and object oriented program-
ming languages),

4

Standardized Specification of Business Components

 Graphical languages or diagram languages (e.g. class diagrams, sequence diagrams, state
diagrams),

 Normal or commonly used languages (e.g. every day language, technical language, stan-
dardized language).

In the following, the different description levels are going to be characterized and will be com-
pleted by a suggestion for a standardized specification method made by the authors of this
memorandum. Detailed discussion of the various aspects and alternatives will be dealt within the
chapters. Supplementary (graphical) notations take a special position, since they are meant to
show selected facts additionally in a way that makes it easier to understand for certain readers.

 Fig. 3: Levels and facts to be specified

5

Standardized Specification of Business Components

The Primary, standard specification method should be notations in formal languages, since they
guarantee the necessary developer and company independent (inter-subjective) understanding of
the specification results. A notation is formal, when syntax and semantics of the notation are pre-
cisely and unequivocally defined. The supplementary (secondary) specification method does not
have to be a formal notation. In general, a lean notation mix should be established in order to
facilitate a wide acceptance of specification methods for their good teachability and understand-
ability.

It is to add, that some authors are skeptical concerning the use of formal specification methods
for business components (or even parts of business components), since they consider the effort
being too large and they fear a decrease of general understandability. As an example, the weak-
nesses of formal specification are demonstrated on the algebraic specification of abstract data
types [cf. [BiMR1991, S. 288-291] and the references given there]. As possible alternatives for
algebraic specification, there should be mentioned operational or verbal specifications. But it has
to be underlined, that these specification results usually are criticized for their poor quality in
terms of precision and inter-subjective understandability.

3 Interface Level

3.1 Purpose

On the Interface Level, basic technical arrangements are made. This means the denomination of
services that are offered publicly by a business component, furthermore the public attributes,
variables and constants, the definition of special (data) types (usually derived from basic data
types), the definition of signatures of the offered services, and the declaration of error messages
and exceptions. Additionally, the services required by a business component from other compo-
nents have to be specified. As adequate form, e.g. programming languages or interface definition
languages (IDL) can be used. The specified agreements guarantee, that service provider and ser-
vice receiver can communicate. Above all, this layer is focusing on technical aspects of the
communication, semantic aspects are remaining mostly disregarded.

Besides, the Interface Level is describing which (functional) terms that have been introduced on
the Terminology Level, are related to which (data) types and which tasks introduced on the ser-
vice level correspond to which services of the business component.

3.2 Notation Suggestion (Primary Notation)

It is suggested to use the Object Management Group’s (OMG) Interface Definition Language
(IDL) [OMG2001a, S. 3.1-3.58]. The OMG IDL is well-suited to define the relevant facts that
are to be specified on the Interface Level. It is an open, by science and industry accepted and
commonly used standard. The operational semantics of the IDL, in particular the translation of
language specific interface definitions, including object references and instances, to IDL, is de-
scribed in the corresponding OMG Language Mappings.

To distinguish offered services from the required services from other components the latter are
delimited by the key word interface extern.

6

Standardized Specification of Business Components

For the notation of the corresponding (functional) terms and (data) types on the one hand side
and tasks and corresponding services on the other hand two tables of two columns each are sug-
gested.

3.3 Example (Primary Notation)

Fig. 4 shows a simplified excerpt from the specification for a Business Component “Stock Keep-
ing” on the Interface Level. The component is meant to manage various stock accounts. The ex-
ample of stock keeping has been chosen, since it is a business tasks which can be regarded as
explored in detail and well understood [Kern1993, S. 63-74, 141-154], so the specification re-
sults can be easily understood from the specialized, business point of view.

interface StockKeeping {
 typedef string AccountNo;
 typedef double Quantity;

 struct Date { ... };

 struct Account {
 AccountNo n;
 Quantity SafetyQuantity;
 Quantity ReorderingQuantity;
 ...
 };
 struct Booking {
 AccountNo n;
 Date ExecutionDate;
 string OrderNo;
 double BookingQuantity;
 };

 exception TooLittleQuantity {};

 void Book(in Booking b);
 void Reserve(in Booking b) raises (TooLittleQuantity);
 quantity CalculateQuantityFor(in AccountNo n, in Date z);
 quantity CalculateDemand(in AccountNo n, in Date z);

void Set SafetyQuantity(in AccountNo n,in double Quantity);
void Set ReorderingQuantity(in AccountNo n,in double Quantity);

};

interface extern {
 typedef long PeriodInDays;

 struct Date {
 unsigned short Day;
 unsigned short Month;
 unsigned short Year;
 };

PeriodInDays CalculatePeriodInDays (in Date b, in Date e);

};

Fig. 4: Example for the use of OMG IDL on the Interface Level

By using the key word interface, the name of the component is determined. Subsections of the
Business Component can herewith be identified unequivocally. StockKeeping::Book indicates,
that a service Book belongs to the Business Component Stock Keeping. Subsequently, the simple
and structured types are declared by using predefined types, which are necessary for the specifi-
cation of interface signatures provided by this service.

7

Standardized Specification of Business Components

After defining special types of the service provider, exceptions can be declared (key word: ex-
ception) that are used to report special failure situations of the service provider. In the example,
a signal is declared that indicates that the desired quantity cannot be reserved due to little (future)
stock. Finally, (key word: interface extern) the services required by the Business Compo-
nent are specified, as well as their calling parameters and return values.

Fig. 5 and Fig. 6 are showing examples of the corresponding functional terms and (data) types
and the tasks and services respectively.

(Functional) Term (Data) Type

account Account

quantity Quantity

booking Booking

Fig. 5: Example for the notation of corresponding terms and types

Task Service

Pass booking b void Book(in Booking b);

Reserve booking b void Reserve(in Booking b) raises
(TooLittleQuantity);

Calculate quantity of account n for date z Quantity CalculateQuantityFor(in Ac-
countNo n, in Date z);

Fig. 6: Example for the notation of corresponding tasks and services

3.4 Outlook

As a possible future alternative to the Interface Definition Language, the use of the Web Service
Description Language (WSDL) [CCM+2001] is being discussed.

4 Behavioral Level

4.1 Purpose

The specifications on the Behavioral Level serve as a detailed description of the Business Com-
ponent’s behavior. They are complementing the basic specifications of the Interface Level, which
is describing above all the syntax of the interface, but leaving it open, how the component is be-
having in general and especially in problem situations. E.g. it could be defined as invariant on the
Behavioral Level, that the Business Component Stock Keeping requires a reordering quantity that
is always greater than (or equal to) the safety quantity. Besides these invariants, on the Behav-
ioral Level pre- and post-conditions for the services are specified.

The completeness of the specification on Behavioral Level is of great importance, which means
not only specifying the provided services but the required services, as well. In this context the
behavior has to be specified which is expected from services provided by other components.

8

Standardized Specification of Business Components

4.2 Notation Suggestion (Primary Notation)

To specify facts on the Behavioral Level, the Object Constraint Language (OCL) is suggested.
OCL has been accepted by the OMG as part of the Unified Modeling Language (UML)
[OMG2001b] and subsequently is the recommended complement to the OMG IDL on the Behav-
ioral Level.

To describe the services required from other components, an imaginary component “Extern” is
defined, that provides these services.

4.3 Supplementary (Secondary) Notation

All conditions defined with OCL should be defined in natural language, as well.

4.4 Example

Fig. 7 shows the specification of the above mentioned stock keeping component on the Behav-
ioral Level. Every condition in OCL will be supplemented by a specification in natural language
(Fig. 8).

StockKeeping
 self.Account->forall(k:Account | k.SafetyQuantity >= 0)

self.Account->forall(k:Account | k.ReorderingQuantity >= k.SafetyQuantity)

StockKeeping::CalculateQuantityFor(n:AccountNo,z:Date):Quantity
 pre: self.Account->exists(k:Account | k.AccountNo = n)
 post: result = self.Booking->iterate(b:Booking; r:Quantity = 0 |
 if b.AccountNo = n and
 b.Date <= z
 then
 r + b.BookingQuantity
 endif
)

Fig. 7: Example for the use of OCL on the Behavioral Level

Further examples can be found in the case study [Acke2001]. In the following, there will be addi-
tional explanation to the examples of Fig. 7.

The specification is beginning with a definition of the context to which the conditions belong.
The context is emphasized by underlining. Hence, the first two specifications belong to the whole
component StockKeeping. The specifications in the second paragraph are delimited to the ser-
vice CalculateQuantityFor which is provided by the component. The delimitation of the con-
text is shown by the :: before mentioning the service. If parameters are needed to show the be-
havior of a component, they can be specified, as well. To specify the behavior of the service Cal-
culateQuantityFor in the example, two typed parameters and the type of the return value are
given. Conditions can occur as precondition (keyword pre), as post condition (key word post) or
as invariant (no key word).

The example specifies two invariants. The first says that for every account (key word forall),
that exists within the component StockKeeping a safety quantity has to be defined
(k.SafetyQuantity) that is greater than zero. The key word self is signaling that the condition
is referring to the delimited context (the entire Business component in the example), although it
is restricted here by means of .Account-> to a collection of accounts which exist within the
component StockKeeping. The term collection means that the component contains a certain
number of accounts, which can be accessed through the name Account, even though the im-

9

Standardized Specification of Business Components

plementation of their management remains invisible to the exterior. For example, they could be
organized in tables of a relational database, in a tree structure etc. Collections provide the possi-
bility to specify complex functional details without having to refer to the actual realization.

The second invariant determines that a reordering quantity must be defined for all accounts,
which is greater or equal the security quantity. Since these invariants have been specified in the
context of StockKeeping, they apply to all services provided by this Business Component.

For the service CalculateQuantityFor, a precondition and a post condition have been speci-
fied: The precondition is stating, that the quantity can only be calculated for accounts which ac-
tually exist, that means, which have been set up (key word exists). The post condition de-
scribes, how the result of the service has been conceived (key word result). The collection of
all bookings is searched (key word: iterate) for those that are referenced as booking
(self.Booking) by the component. The start of this loop is set at zero (r:Quantity = 0).
Within each iteration, it will be verified that the booking is referring to the correct account
(b.AccountNo = n) and that the booking is executed after the point in time the parameter indi-
cates that is handed over as deadline date (b.Date <= z). If these two conditions are fulfilled,
the stock entry or exit is added to the final result (r + b.BookingQuantity).

The security quantity of every account has to be equal to zero or greater.

The reordering quantity of every account has to be equal to the security quantity or
greater.

The service CalculateQuantityFor can only be executed by an account that is known
to the component.

The quantity of an account (returned by the service CalculateQuantityFor) at a point
of time is the sum of the quantities that have been booked on this account until this date.
(Exits are considered as negative quantities and subtracted).

Fig. 8: Example for the use of secondary notation on the Behavioral Level

4.5 Alternative Notations and Outlook

In order to allow the use of components on the basis of specifications, the description on the Be-
havioral Level has to be extremely accurate. That is the reason for suggesting a formal notation.
However, since a formal notation is very likely not to be understood by every reader, every con-
dition should be complemented with an explanation in natural language. This will guarantee an
enhanced understandability, especially for the communication with non-technical employees. The
quality of these expressions in natural language can be enhanced by the use of sentence construc-
tion plans (see chapter 7/8)

10

Standardized Specification of Business Components

5 Coordination Level

5.1 Purpose

The specifications on the Coordination Level are defining succession relationships between ser-
vices and synchronization requirements. It can be stated for example, that security stock has to be
defined for an account before the first booking can be carried out, or that two bookings cannot be
executed on one account at the same point in time. Conditions on the Coordination Level can
refer in the same manner to services offered by the Business Component as they can refer to re-
quired services from other components. If there is no need to stipulate exactly which component
provides the required services, or the component is not known, the service will be addressed to
the component “extern”.

Purpose of the Coordination Level is providing relevant information how the Business Compo-
nent can be integrated in a component based software solution from a process point of view.
Hence, the specifications refer to conditions that have an economic, objective-logical relation to
other components or to other services within the Business Component itself.

5.2 Notation Suggestion (Primary Notation)

For the specification of facts concerning the Coordination Level, it is suggested to use OCL with
an addition of temporal operators [CoTu2000] as a notation standard. This choice allows avoid-
ing a rupture in the use of notation methods between Behavioral and Coordination Level.

The following temporal operators can be used:

 sometime_past φ, always_past φ, φ sometime_since_last ψ, φ always_since_last ψ

 sometime φ, always φ, φ until ψ, φ before ψ

 initially φ

The expressions φ and ψ can hold a boolean value that is subject to changes in the course of time.
E. g. φ could relate to the fact that in a given moment the quantity on the account is greater than
or equal to the security quantity. The temporal expression “always_past φ” means that (from the
perspective of the actual point in time) in the past φ has always been valid. “Always_past φ” is
only true if in the past the quantity on the account has always been greater than or equal to the
security quantity. For further details and exact semantics of the temporal operators, refer to
[CoTu2000].

In addition, the operators before and after are introduced. The operand of both operators is a re-
quest of another service including calling parameters.

 The expression before(service1(par1,par2)) is true in exactly that moment, when the ser-
vice service1 is being requested with the parameters par1 and par2.

 The expression after(service1(par1,par2)) is true in exactly that moment, when the execu-
tion of the service1 with the parameters par1, par2 has been successfully terminated.

Expressions such as before(...) and after(...) can be used as operands in conjunction with other
temporal operators. By means of this extension, the request moment of methods can be expressed
syntactically more precise with OCL expressions. Furthermore, it is possible to specify condi-

11

Standardized Specification of Business Components

tions relating to different states during processing of a transaction. For further details and exam-
ples, refer to [Acke2001].

Moreover it has to be paid attention to the fact, that the use of temporal operators is restricting
the use of OCL in the following aspects:

 An OCL expression cannot necessarily be interpreted at a specific point in time

 Temporal OCL expressions allow the use of Non-Query-Methods

As a consequence, temporal operators for specification purposes should be regarded as a model-
ing method for human-to-human communication. The use of temporal operators should be lim-
ited to the Coordination Level so that the Behavioral Level is not subject to the restrictions men-
tioned above.

5.3 Supplementary (Secondary) Notation

All specifications using the OCL extended by temporal operators should be complemented by
explanations in natural language.

5.4 Example

Two examples of OCL extended by temporal operators are shown in Fig. 9. Every condition will
be expressed in natural language, as well (Fig. 10).

OrderProcessing::PrintInvoice(at:Order)
pre : sometime_past(after(AcceptCustomerOrder(at))) and

not(after(CancelOrder(at))
sometime_since_last(after(AcceptCustomerOrder(at))))

OrderProcessing::AcceptCustomerOrder(at:Order)
post: sometime(after(PrintInvoice(at))) or sometime(after(CancelOrder(at)))

Fig. 9: Example for the use of OCL extended by temporal operators

The first statement in Fig. 9 is a precondition for the service PrintInvoice in the Business
Component OrderProcessing. This precondition expresses that before this service can be in-
voked, firstly the service AcceptCustomerOrder must have been executed for the same order
and that secondly since that acceptance of this order no cancellation of this order has been carried
out (by executing the service CancelOrder).

The second temporal condition is a post condition for the service AcceptCustomerOrder. In
addition to the previous statement it is required that after accepting an order, sometime later ei-
ther an invoice has to be printed for exactly this order by executing the service PrintInvoice or
that this order must eventually be canceled by executing the service CancelOrder.

The two statements express different properties. On the one hand, the precondition for PrintIn-
voice does not forbid that the service AcceptCustomerOrder is executed without an invoice
will ever being printed or a cancellation occurring for that order. On the other hand, the post con-
dition for AcceptCustomerOrder does not exclude the execution of the service PrintInvoice
for a certain order although this order has never been accepted by means of the service Accept-
CustomerOrder.

12

Standardized Specification of Business Components

An invoice for a customer order can only be printed, if the customer order has been accepted and
it has not been canceled since accepting it for the last time.

For an accepted customer order in the future either an invoice has to be printed or it has to be
canceled.

Fig. 10: Use of secondary notation on the Coordination Level

5.5 Alternative Notation Methods and Outlook

On the Coordination Level as well, conditions have to be specified with the highest degree of
possible precision. For this reason, a formal notation should be used. In order to support an easy
understandability, all formal specifications should be complemented by statements in natural
language. For higher precision of the specification in natural language, sentence construction
schemes can be used (see chapter 7/8).

6 Quality Level

6.1 Purpose

In addition to the mentioned levels until this point, which have been focusing on functional prop-
erties of a Business Component, the non-functional properties have to be specified as well. These
are to be specified on the Quality Level. Examples are availability, performance properties or
maintenance needs for the offered services. The specification on this level has to determine suit-
able quality criteria, the appropriate measures and methods for their actual measurement and, if
appropriate, service level specifications for the services during runtime. Furthermore, it is to
specify in which form this information is made accessible for the Business Component’s user.

The measurement of a Business Component’s quality properties can be realized by means of
quantifying dynamic measurements such as throughput or response time. Certain Quality proper-
ties can also be inferred from static properties such as number and capacity of functions offered,
linkage relations, or the completeness of test cases - with the corresponding empirical back-
ground experience.

In particular dynamic measurements depend to a significant extent on initial conditions (proces-
sor speed, main memory size, data base management system (DBMS), etc.) of the environment in
which the Business Component is executed. These initial conditions have to be fixed to allow
objective statements concerning quality properties.

However, the initial conditions might be very different for the various Business Components.
The performance of one Business Component might depend primarily on the performance of the
DBMS, where another is for the main part depending on processor velocity or network capacity.
For this reason this notation standard leaves it up to the person who creates the specification to
determine which initial conditions should be made definite for a special Business Component.

If a specification of initial conditions is possible, the determination of quality properties gives
two choices:

13

Standardized Specification of Business Components

 Specification of a reference environment: In the setting of a fixed reference environment
that has been specified, quality results are measured. Nonetheless, this proceeding is
rather costly and the specified reference environment can quickly be outdated and reduce
the relevance of the measurements (concerning the intended use of the component).

 Collection of measurements in actual environments: For this proceeding, no detailed
specification of a reference environment is defined. Instead, a variety of quality meas-
urements is taken from a set of initial conditions, and these are collected within the speci-
fication. A problem for this proceeding might be the collection of data.

Regarding the mentioned initial conditions the finalization of quality criteria is not recom-
mended, because this would limit the universality of the specification. For this reason, a rough
framework is set to guide the process of determination of quality specifications which will be
adapted by the manufacturer of the Business Component.

Fig. 11: Steps to quality specification [ScDu2001]

6.2 Steps for Quality Specification

Fig. 11 shows the necessary steps in the quality specification process, even though step 1 and 2
are independent of the aforementioned reference environment, where steps 3 and 4 can only be
executed in the context of the reference environment. As an example, Fig. 11 shows the proceed-
ings for a specification of the quality criteria “Efficiency”, the following sections cover a detailed
description of the steps.

6.3 Quality Classes as Frame (Step 1)

The term “quality” for a software product in general and for Business Components can be inter-
preted in various ways. Therefore it is inevitable to specify a quality model, which makes the
term “quality” operational. In order to meet this need various so-called Factor Criteria Metrics

14

Standardized Specification of Business Components

(FCM) Model approaches have been developed (cf. [Balz1998]) which determine quality criteria
on the basis of quality factors and suggest corresponding quantification metrics.

The ISO norm 9126 is a standard for quality models in accordance with the FCM approach. In
the following, it will be used as an orientation guide to develop quality classes to evaluate com-
ponents. Introducing these quality classes [ScSc2000] within the specification of software com-
ponents allows the granular consideration of quality properties of a concrete component.

 Portability Q1: Adaptability, Installability

 Usability Q2: Learnability, Operability, Understandability

 Efficiency Q3: Spatial, in terms of time, in terms of resources

 Functionality Q4: Suitability, Interoperability, Precision

 Reliability Q5: Fault tolerance, Maturity, Recoverability

 Maintainability Q6: Analyzability, Changeability, Stability, Testability

A concrete Business Component e.g. can show the quality properties Q1 and Q3, which means
that the specifications contain statements concerning exactly these properties, but not to the oth-
ers. What the finalized instance of a certain quality class’ specification looks like will be deter-
mined with the help of the Goal-Question-Metric (GQM) method.

6.4 Component Specific Quality Models (Step 2)

In order to identify the quality criteria that have to be specified for a business component, the so-
called GQM Paradigm can be used [SoBe1999]. This offers a methodical proceeding model to
work out the specific quality model tailored to the needs of a development process. Hence, it can
be used for component development, as well. The GQM method is based on the quality objec-
tives that have to be agreed upon (in the special case of quality, these can be taken from ISO
9126-1). Furthermore, by determining the questions how these objectives can be reached, the
answer to these questions/the quantifications lead to the needed metrics. In order to answer the
identified questions, success criteria are typically determined following [Dumk2001]:

 Point of View: Component developer, component user, buyer

 Deployment: Special project or special product class

 Purpose: Analysis, comprehension ...

 Context: e.g. in the setting of a development team.

Suggestions for external metrics can be found in ISO 9126-2, for internal metrics in ISO 9126-3.
Furthermore, the GQM approach suggests other tasks to ensure an efficient metric measurement,
result interpretation and validation, see [DuFS2000].

For the quality class Q3 (efficiency) the result can be as follows:

Goal

The measured performance of the functions provided by the component is highly important
for its successful use. (e.g. for components in sectors like telecommunication, banking,
military)

15

Standardized Specification of Business Components

Question

Which measurements are needed for the assessing of performance aspects related to time
and space?

Metric

For the assessment of performance that is visible to the exterior, the measurement of re-
sponse time and throughput of a concrete function is suggested (cf. ISO 14756).

In addition, it is necessary to determine, which resources have been used to achieve these
results (CPU, bandwidth, software services etc.), the work load (in their temporal succes-
sion), the hard- and software architecture with the performance properties of the entire ar-
chitecture (network, processors, services etc.), which is equivalent to the above mentioned
reference environment.

For the quality class Q3, this proceeding for determining the measurements have been elaborated
in [ScSc2000].

6.5 Measurement of the Determined Quality Criteria (Step 3)

Quantifying the quality criteria of a component can only be done by using concrete proceedings
or methods, which should be tool based for efficiency reasons. In the following examples of
these proceedings with respect to the quality classes are shown:

 Portability Q1: In the special case of an Enterprise Java Bean (EJB), tools (e.g.
parser) could be used to analyze the conformity with EJB specifications.

 Usability Q2: Evaluation by using e.g. a question catalogue on the component’s han-
dling properties, which will be at the potential user’s disposition.

 Efficiency Q3: Use of methods such as performance estimation, performance models,
performance benchmark and the suitable profiler tools.

 Functionality Q4: Execution of functionality tests during the development phase.

 Reliability Q5: Extraction of experience by measuring deployed components in real
world scenarios.

 Maintainability Q6: Software evaluation to gain static code metrics

Following the IEEE standard, the subsequent, basic measuring strategies can be used: evaluation
(e.g. with questionnaires), feature estimation (e.g. with a formula based description of potential
relations), model based measurement or direct measurement.

6.6 Specification of Quality Properties (Step 4)

Since there are too many possible notations, no Primary notation can be suggested. Therefore,
only some suggestions are given, how extracted quality features can be used as a specification for
a component.

 Use of elements or diagrams according to the UML notation

 Use of a formula based description

 Storage of quality properties in the Business Component itself

 Storage of quality properties in a repository.

16

Standardized Specification of Business Components

7 Terminology Level

7.1 Purpose

In all different levels, the specification of business components uses technical terms, which have
a domain specific functional meaning (semantic). Generally, these terms do not have an un-
equivocal meaning and/or definition and, hence, have to be specified to guarantee their un-
equivocal use.

The Terminology Level serves as central registry for all terms of a component and keeps all
terms which are useful for the specification and their definitions in a dictionary. The terms that
are defined on this level are used on all other levels (e.g. for the specification on the Marketing
Level or Task Level). For the composition of the dictionary, all (important) terms applied in the
specification will be listed with a definition. This supports the Business Component’s self-
containment, as a precondition to being marketable. Furthermore it should be possible to addi-
tionally refer to a standard if some of the terms are related to it. In this way, functional terms can
be redefined by way of derogation from a standard.

For producers of a Business Component as well as for users deploying it in their system, a com-
prehensive administration of functional terms with respect to all components is of great impor-
tance in order to locate conflicts based on different definitions. This task could be provided e.g.
by a component repository, which helps administrating the business components.

Functional terms and their definitions can be stored in a computer accessible way, e.g. by using a
Resource Description Framework (RDF), an XML based language to store terminologies. How-
ever, it is suggested to use a description in natural language or any other easy to read language
for the specification on the Terminology Level. That is, because usually functional experts have
to choose the component on basis of the terminology it uses.

Besides the dictionary of technical terms, the Terminology Level allows to optionally specify an
integrated scheme of attributes and services giving an overview of the attributes and services the
Business Component is using.

Although such an integrated scheme is not belonging to the conceptual and domain specialized
intention of this level and shows characteristics of a technical description, it is reasonable to
specify the scheme on this level. Firstly, the different levels (e.g. Coordination, Behavioral and
Interface Level) can make use of it. Since this level has the character of a central reference book,
it is logical to store it here. Secondly, the denomination of attributes and services (in a best case
scenario) is closely related to the functional terminology.

It is to be stated in addition, that such an integrated attribute and service scheme is not intended
to substitute the specification of the Business Component’s inside view, but rather aimed at sup-
porting the specification process on other levels.

7.2 Notation Suggestion (Primary Notation)

In order to meet the aforementioned requirements, it is suggested to specify the terminology by
using a so-called Standardized Business Language as primary notation (cf. [Ortn1997] and
[Lehm1998]). It is characterized by a dictionary of unequivocally defined functional terms and by

17

Standardized Specification of Business Components

using a rational grammar (reconstructed grammar of natural, colloquial language) to form the
statements. A rational grammar consists of patterns and stencils to compose sentences.

The composition of a dictionary for the component storing the functional terminology is the pri-
mary goal of the specification on the Terminology Level. This is done by applying methods for
the definition and the arrangement (organization) of all relevant functional terms.

Methods for the definition are:

 Explicit definitions of terms (avoiding circular definitions)

 Predicator rules, allowing to put different terms in relation

 Introduction of new words with positive examples and examples to prove the opposite (in
order to solve the problem of a starting point for definitions)

Methods for the organization of terms are:

 Alphabetical order

 Short and long definitions

 Usage examples

As a graphical illustration of conceptual relations a complementing construction of an integrated
attribute and service scheme a UML class diagram is recommended. It has to be noted that this
does neither predetermine an object oriented implementation nor suggest a special inside view of
a component.

7.3 Example (Primary Notation)

A notation making use of the above mentioned recommendations could look like the following
example of the specification for the financial accounting terminology (Fig. 12).

ASSETS

 ...

BALANCE

 Short definition: BALANCE = DF the comparison of ASSETS and LIABILITIES of a company
at a special date (CUTOFF DATE)

 Long definition: BALANCE= DF a BALANCE is together with the PROFIT AND LOSS
ACCOUNT part of the ANNUAL ACCOUNT. A BALANCE is the comparison of ASSETS and
LIABILITIES of a company at a special date (CUTOFF DATE). A BALANCE has to be based
on the GENERALLY ACCEPTED ACCOUNTING PRINCIPLES. [...]

 Examples: COMMERCIAL BALANCE, TAX BALANCE

 Predicators: x ∈ BALANCE => x ∈ ANNUAL ACCOUNT

 x ∈ BALANCE => x ∉ PROFIT AND LOSS ACCOUNT

PROFIT AND LOSS ACCOUNT:

 ...

Fig. 12: Example for the specification of terminology

18

Standardized Specification of Business Components

A specification of an integrated attribute and service scheme will not be depicted in this place,
since the modeling of components with UML classes is generally known.

7.4 Complementary (Secondary) Notation

For the composition of a dictionary, the use of a formal standardized language can be omitted
and hence, the dictionary will be in the form of natural language.

In addition, the use of a technical language as complementary notation would allow the caption
of whole systems of technical terms. As an example, the XML-based RDF (cf. [Roth2001])
should be mentioned as one of the constituting technologies for a semantic web.

In this specification suggestion, no preference for a secondary notation in the dictionary is given,
the same applies for the integrated service scheme and the attribute scheme.

7.5 Example (Secondary Notation)

Examples for dictionaries in natural language can be found in the corresponding scientific litera-
ture. In relation with financial accounting, dictionaries contain the functional terms, which have
been used in the above mentioned example.

A definition of systems of functional terms by using RDF can be found e.g. in [Roth2001].

8 Task Level

8.1 Purpose

For the development of component oriented business application systems, Business Components
are specified in order to support or execute different business tasks. The documentation of these
tasks that are being supported by a Business Component, and in case the decomposition in sub-
tasks on a content-related (conceptual) layer, bears an important range of advantages.

Firstly, this leads - in combination with the related domain (which is described on the Marketing
Level) - to the field of application for a Business Component. The specification on the Task
Level gives the functional experts an instrument to determine the suitability of a component for
the actual use in a given situation.

In addition, the specification of business tasks (and its functional decomposition into subtasks) is
a precondition to a reasonable assignment of these tasks to the services the Business Component
is offering through its interfaces. Such an assignment is done on the Interface Level with respect
to the Task Level (see chapter 3)

In the task index of a component, all tasks supported should be listed explicitly and, if applicable,
structured into subtasks. This is supportive of the Business Component’s self-containment,
which is a precondition for its marketability. Additionally there should be a possibility to refer-
ence a standard, if some of the tasks are related to such a standard. In this way, business tasks can
be redefined as derogation from a standard.

19

Standardized Specification of Business Components

8.2 Notation Suggestion (Primary Notation)

The specification of (business) tasks that are being supported by a Business Component should
be departing from the content-related, conceptual point of view. This makes it preferable to use a
language that is easy to read for end users. In addition, the description should use a clear lan-
guage in order to avoid misunderstandings in the course of the documentation.

The primary notation is hence suggested to make use of a reconstructed Business Language for
the specification, which is close to the natural language.

Such a reconstructed functional language is characterized by being based on a dictionary with
clear and unequivocal (defined) technical terms. Furthermore, its propositions are made with a
reconstructed grammar with a determined set of sentence construction plans as schemes. The
dictionary is to be compiled in the specification of the Terminology Level whereas the Task
Level is giving details about the business tasks and their functional decomposition into subtasks.

The structure of reconstructed functional languages is discussed among others in [Ortn1997] and
[Lehm1998] As an introduction, a few sentence construction plans will be presented to illustrate
the specification of functional statements.

 Abstracting relation (equality, inheritance):
An A is a B (or a C)

 Compositional relation (dependency)
An A consists of / is part of a B

 Distribution relation
An A has a B

 Operation relation
An A does / sustains a B

 Change relation
An A becomes a B

 Succession relation
An A happens before / during / after a B

 Historical relation
An A is terminated before a B

The indefinite article a/an underlines that the sentence construction plans are being used to ex-
press general statements from which schemes can be derived.

8.3 Example (Primary Notation)

By means of the sentence construction plans, statements on the business tasks that a Business
Component supports can be specified. The example of Fig.13 shows specification of a business
component “Balancing”, which is used in financial accounting; it is supposed that every func-
tional term (terms in capital letters) has been defined on the Terminology Level.

A BALANCE is part of an ANNUAL ACCOUNT

A BALANCE is based on a LEGAL FOUNDATION

A PROFIT AND LOSS ACCOUNT is made before a BALANCE

20

Standardized Specification of Business Components

A BALANCE consists of a BOOKING, a PROFIT RESULT and a DOCUMENTATION

...

Fig. 13: Example for the specification of business tasks

8.4 Supplementary (Secondary) Notation

As an alternative to a specification in a reconstructed functional language, the natural language
can be used (as prose). When a developer is deciding to use such a notation he/she is implicitly
making use of the sentence construction plans that his/her natural language is based on. In order
to achieve a certain degree of simplicity, complex sentence structures should be avoided. For the
secondary specification as well, functional terms should be defined (on the Terminology Level)
and a general understanding should not be assumed.

Due to the considerable problems caused by computer-supported administration of such a nota-
tion, it should be refrained from using natural language.

8.5 Example (Secondary Notation)

The example of section 8.3 can be described very similar in secondary notation (Fig. 14). How-
ever, the statements are not following regular schemes so that a (computer) system is not able to
determine automatically which type of statement it is dealing with (and e.g. convert it into a dia-
gram language etc.)

A BALANCE is part of the annual accounts.

It has to follow a LEGAL FOUNDATION

Before, the PROFIT AND LOSS ACCOUNT has to be settled

A balance consists of the subtasks BOOKING, PROFIT RESULT and DOCUMENTATION

...

Fig. 14: Example for the specification of business tasks in secondary notation

9 Marketing Level

9.1 Purpose

The purpose of the Marketing Level is to specify the features of the Business Component that are
important from a business-organizational point of view. The level includes all those characteris-
tics, which serve as a working basis for every sales person, customer, assembler, and quality en-
suring officer for Business Components. Additional features of the Business Component, that are
relevant for users in other roles, e.g. on the Behavioral or Quality Level, will not be regarded on
this level. The features that are important on this level can be categorized in three sections
[Kauf2000]:

21

Standardized Specification of Business Components

 Business semantics features: Features that describe business related and semantic proper-
ties of the Business Component.

 Technical features: Features that are technical conditions for using and running the Busi-
ness Component.

 Additional features: Features that are neither related to business-semantic nor to technical
features.

9.2 Notation suggestion (Primary Notation)

As primary notation, the form of a table is suggested. The different attributes will be explained
subsequently and are suggested to be specified using the following conventions:

 Every table entry gives the name of the attribute. It is printed bold.

 If it is optional to specify an attribute, it is put in square brackets [].
Example: [optional attribute]

 Attributes that can be specified repeatedly, are put into braces {}.
Example: {repeatable attribute}

Name

An alphanumerical marketing name

[Identification]

An unambiguous label to identify the component

Version

This feature gives the version as well as the release of a component

Branch of Economic Activity

The specification of the business domain gives supplementary information in which economic sec-
tors a component can be applied. Basis for the definition of the sectors is the International Stan-
dard Industrial Classification of All Economic Activities [UNSD1989]. It is possible to choose more
than one, or all sectors, as well as to select “independent from sectors”.

Domain

To allow a rough content-related classification of the services provided by a component, a func-
tional domain is defined. The delimitation of the functional domain has been defined by [Mert200].
The specifications are confined to the uppermost level of the Model of Functions. Possible values
are:

Research and development; sales; procurement; inventory; production; delivery; after sales ser-
vices; finance; accounting; human resource; facility management. It is possible to choose more
than one, up to all functional sectors.

Scope of Supply

As stated a Business Component consists of the definition, of various (software) artifacts. The
purpose of specifying the scope of supply is to determine which artifacts the component com-
prises. This is an important source for various persons in the software development process to
complete their assigned tasks completely and correctly.

Concerning the component production, the scope of supply is needed by the quality ensuring offi-
cers to check whether the release of a component corresponds to the (software) artifacts speci-
fied, whether the mentioned (software) artifacts exist in the release or if (software) artifacts have
been added to the release erroneously. In the sense of a use of a Business Component, the scope

22

Standardized Specification of Business Components

of supply is the basis for the installation of a component.

For the assembler, the scope of supply bears the information whether all mentioned (software)
artifacts have been included in the package and what purpose and functionality every (software)
artifact has.

Component technology

The specification of the component technology that has been used and the underlying version
standards for this component.

{Systems requirements}

In this feature, the systems requirements for a component specify the platform it can run on and
the required systems configuration. A system configuration includes processor architecture, mem-
ory size, hard disk space, operating system, version of the operating system, component applica-
tion framework and component system framework (middleware, data base system etc.)

[Manufacturer]

This feature allows to identify the manufacturer of a component unequivocally which is needed for
getting into contact with the manufacturer, as well as to facilitate gathering information from other
sources. Further information could be quotations, turnover and its development, profits, economic
development, reputation, number of installations, reference customers as well as reports from
other customers [Kauf2000]

[Contact person]

This feature names a first contact person in the case that a potential buyer is interested in purchas-
ing the component from the manufacturer.

[Contract conditions]

This feature can be used to specify conditions for buying the component from the manufacturer.
These conditions are prices (per license, per user etc.), service level, terms of business, prices for
service contracts, possible consulting services and training, terms of payment, legal domicile, etc.

[Comments]

This feature allows specifying further aspects of relevance concerning the component. These
could be e.g. parallel processing of different clients with a single instance of the Business Compo-
nent, multiple user handling, or alike.

9.3 Example (Primary Notation)

The following example is a specification of the business component “bank codes”.

Name

Bank codes

Version

V 1.0

Branch of Economic Activity

Independent of domains

Domain

Finance

Scope of Supply

bankcodes.jar: File of java classes for the implementation

23

Standardized Specification of Business Components

bankcodes.tws: Component IDL for middleware Twister by Brokat

create_db.sql: SQL script to generate an Oracle data base storing the codes

blz0010pc.txt: Original data source of bank codes of the Central Bank of the Federal
Republic of Germany (Source: http://www.bundesbank.de/)

SATZ188.doc: Description of the original data source blz0010pc.txt (Source:
http://www.bundesbank.de/)

script_sampledata.pl: Perl script to convert the files SATZ188.doc into SQL instructions

bankcodestests.jar: Dummy client implementations to test the component functionality

Component technology

Brokat Twister 2.3.5

Systems requirements

Processor architecture: x86

RAM: 512 MB

Hard disc: 10 MB

Operating system: Windows NT 4.0, SP 3

Data base system: Oracle 8i

Component System Framework: Brokat Twister 2.3.5

Manufacturer

Technische Universität Chemnitz, Professur Wirtschaftsinformatik II, D-09107 Chemnitz

Contact person

Peter Fettke, +49/371/531-4362, peter.fettke@isym.tu-chemnitz.de

Contract conditions

There are no general contract conditions but they have to be negotiated individually. In principle,
research institutions and research interested industry company are addressed.

9.4 Alternative Notations, Deciding Aspects, Outlook

For reasons of good readability the table form has been preferred to more formal notations as
primary notation. For the realization of specification elements on this level, another approach
[FeLo2001] is suggested additionally, that is based in the Extensible Markup Language (XML)
and a suitably specified Document Type Definition (DTD). Additional features that are relevant
to the Marketing Level, are listed in [Kauf2000, S. 110-115], [Ohle1998, S. 135-137] and
[W3C1997]

24

Standardized Specification of Business Components

Literature
[Acke2001] Ackermann, J.: Fallstudie zur Spezifikation von Fachkomponenten. In: K. Turowski (Ed.): Model-

lierung und Spezifikation von Fachkomponenten: 2. Workshop. Bamberg 2001, S. 1-66.

[Balz1998] Balzert, H.: Lehrbuch der Software-Technik: Software-Management, Software-Qualitätssicherung,
Unternehmensmodellierung. Spektrum Akademischer Verlag, Heidelberg 1998.

[BiMR1991] Biethahn, J.; Mucksch, H.; Ruf, W.: Ganzheitliches Informationsmanagement: Daten- und Entwick-
lungsmanagement. Bd. 2, Oldenbourg, München 1991.

[CCM+2001] Christensen, E.; Curbera, F.; Meredith, G.; Weerawarana, S. Web Services Description Language
(WSDL) 1.1. http://www.w3.org/TR/wsdl, Download on 2002-02-06.

[CoTu2001] Conrad, S.; Turowski, K.: Meeting Specifications Demands for Business Components. In: Siau, K.,
Halpin, T (Ed.).; Unified Modelling Language: Systems Analysis, Design and Development Issues ,
Idea Group Publishing, Hershey PA, USA, 2001 :

 [Dumk2001] Dumke, R.: Software Engineering - Eine Einführung für Informatiker und Ingenieure: Systeme, Erfah-
rungen, Methoden, Tools. Vieweg-Verlag, Braunschweig 2001.

[DuFS2000] Dumke, R.; Foltin, E.; Schmietendorf, A. (2000): Metriken-Datenbanken in der Informationsverarbei-
tung. Preprint der Fakultät für Informatik Nr. 8, Otto-von-Guericke-Universität Magdeburg. Magde-
burg.

[FeRT1999] Fellner, K.; Rautenstrauch, C.; Turowski, K.: Fachkomponenten zur Gestaltung betrieblicher An-
wendungssysteme. In: IM Information Management & Consulting 14 (1999) 2, S. 25-34.

[FeLo2001] Fettke, P.; Loos, P.: Ein Vorschlag zur Spezifikation von Fachkomponenten auf der Administrations-
Ebene. In: K. Turowski (Ed.): Modellierung und Spezifikation von Fachkomponenten: 2. Workshop.
Bamberg 2001, S. 95-104.

[Kauf2000] Kaufmann, T.: Entwurf eines Marktplatzes für heterogene Komponenten betrieblicher An-
wendungssysteme. Berlin 2000.

[Kern1993] Kernler, H.: PPS der 3. Generation: Grundlagen, Methoden, Anregungen. Hüthig Buch Verlag, Hei-
delberg 1993.

[Lehm1998] Lehmann, F. R.: Normsprache. Das aktuelle Schlagwort. In: Informatik-Spektrum 21 (1998) 5, S. 360-
367.

[McIl1968] Mcllroy, M. D.: Mass Produced Software Components. In: P. Naur; B. Randell (Ed.): Software Engi-
neering: Report on a Conference by the NATO Science Comittee. NATO Scientific Affairs Division,
Brussels 1968, S. 138-150.

[Mert2000] Mertens, P.: Integrierte Informationsverarbeitung 1: Administrations- und Dispositionssysteme in der
Industrie. 12. Aufl., Gabler, Wiesbaden 2000.

[Ohle1998] Ohlendorf, T.: Architektur betrieblicher Referenzmodellsysteme - Konzept und Spezifikation zur
Gestaltung wiederverwendbarer Norm-Software-Bausteine für die Entwicklung betrieblicher An-
wendungssysteme. Aachen 1998.

[OMG2001a] OMG (Ed.): The Common Object Request Broker: Architecture and Specification: Version 2.5, Sep-
tember 2001. OMG, Framingham 2001a.

[OMG2001b] OMG (Ed.): Unified Modeling Language Specification: Version 1.4, September 2001. OMG, Need-
ham 2001b.

[Ortn1997] Ortner, E.: Methodenneutraler Fachentwurf: Zu den Grundlagen einer anwendungsorientierten Infor-
matik. Teubner, Stuttgart 1997.

[OrRS1990] Ortner, E.; Rößner, J.; Söllner, B.: Entwicklung und Verwaltung standardisierter Datenelemente. In:
Informatik-Spektrum 13 (1990) 1, S. 17-30.

[Roth2001] Rothfuss, G.: Content Management mit XML. Springer, Berlin 2001.

[Sahm2000] Sahm, S.: Organisationsmodelle zur komponentenorientierten Anwendungsentwicklung / terminolo-
giebasierte Spezifikation von Fachkomponenten. In: K. Turowski (Ed.): Modellierung und Spezifika-
tion von Fachkomponenten: Workshop im Rahmen der MobIS 2000 Modellierung betrieblicher In-
formationssysteme, Siegen, Deutschland, 12. Oktober 2000, Tagungsband. Siegen 2000, S. 17-40.

25

Standardized Specification of Business Components

[ScDu2001] Schmietendorf, A.; Dumke, R.: Spezifikation von Softwarekomponenten auf Qualitätsebene. In: K.
Turowski (Ed.): Modellierung und Spezifikation von Fachkomponenten: 2. Workshop. Bamberg 2001,
S. 113-123.

[ScSc2000] Schmietendorf, A.; Scholz, A.: Spezifikation der Performance - Eigenschaften von Softwarekomponen-
ten. In: K. Turowski (Ed.): Modellierung und Spezifikation von Fachkomponenten: Workshop im
Rahmen der MobIS 2000 Modellierung betrieblicher Informationssysteme, Siegen, Deutschland, 12.
Oktober 2000, Tagungsband. Siegen 2000, S. 41-49.

[SoBe1999] Solingen, v. R.; Berghout, E.: The Goal/Question/Metric Method. McGraw Hill, 1999.

[Stat1993] Statistisches Bundesamt (Ed.): Klassifikation der Wirtschaftszweige, Ausgabe 1993 (WZ 93).
http://www.destatis.de/allg/d/klassif/wz93.htm, Download on 2002-02-15.

[Turo1999] Turowski, K.: Standardisierung von Fachkomponenten: Spezifikation und Objekte der Standardis-
ierung. In: A. Heinzl (Ed.): 3. Meistersingertreffen. Schloss Thurnau 1999.

[Turo2001] Turowski, K.: Spezifikation und Standardisierung von Fachkomponenten. In: Wirtschaftsinformatik 42
(2001) 3.

[UNSD1989] United Nations Statistics Division (Ed.): International Standard Industrial Classification of All Eco-
nomic Activities, Third Revision, (ISIC, Rev.3). http://esa.un.org/unsd/cr/family2.asp?Cl=2,
Download on 2002-02-15.

[W3C1997] World Wide Web Consortium (Ed.): The Open Software Description Format (OSD).
http://www.w3.org/TR/NOTE-OSD.html, Download on 2001-04-25.

Authors :

Jörg Ackermann
Von-der-Tann-Str. 42, 69126 Heidelberg
E-Mail: joerg.ackermann.hd@t-online.de

Dr. Frank Brinkop
iteratec Gesellschaft für iterative Softwaretechnologien mbH
Inselkammerstr. 4, 82008 München-Unterhaching
Phone: +49(89)614551-0, Fax: -10
E-Mail: frank.brinkop@iteratec.de

Prof. Dr. Stefan Conrad
Ludwig-Maximilians-Universität München
Institut für Informatik
Oettingenstr. 67, 80538 München
E-Mail: conrad@informatik.uni-muenchen.de

Peter Fettke
Technische Universität Chemnitz
Fakultät für Wirtschaftswissenschaften
Information Systems & Management
09107 Chemnitz
Phone: +49(371)531-4375, Fax: -4376
E-Mail: peter.fettke@isym.tu-chemnitz.de

Andreas Frick
ExperTeam AG
Niederlassung Dortmund
Emil-Figge-Straße 85, 44227 Dortmund
Phone: +49(231)9704-292/(-200), Fax: -299
E-Mail: andreas.frick@experteam.de

Dr. Elke Glistau
Otto-von-Guericke-Universität Magdeburg
Fakultät Maschinenbau
Universitätsplatz 2, 39106 Magdeburg
Phone: +49(391)671-2660
E-Mail: elke.glistau@mb.uni-magdeburg.de

Holger Jaekel
Oldenburger Forschungsinstitut für Informatik-Werkzeuge und -
Systeme (OFFIS)
Escherweg 2, 26121 Oldenburg
Phone: +49(441)9722-125
E-Mail: holger.jaekel@offis.de

Otto Kotlar
Rohmer Str. 24, 60486 Frankfurt
Phone: +49(69)0795602
E-Mail: otto_kotlar@yahoo.de

Prof. Dr. Peter Loos
Technische Universität Chemnitz
Fakultät für Wirtschaftswissenschaften
Information Systems & Management
09107 Chemnitz
Phone: +49(371)531-4375, Fax: -4376
E-Mail: loos@isym.tu-chemnitz.de

Prof. Dr. Heike Mrech
Fachhochschule Merseburg
Fachbereich Maschinenbau
Geusaer Str., 06217 Merseburg
Phone: +49(3461)46-3027
E-Mail: heike.mrech@mb.fh-merseburg.de

Prof. Dr. Erich Ortner
Technische Universität Darmstadt
Fachbereich Rechts- und Wirtschaftswissenschaften
Wirtschaftsinformatik I
Hochschulstr. 1, 64289 Darmstadt
Phone: +49(6151)16-4309; Fax: -4301
E-Mail: ortner@bwl.tu-darmstadt.de

Dr. Ulrich Raape
Fraunhofer Institut für Fabrikbetrieb und -automatisierung IFF
Sandtorstraße 22, 39106 Magdeburg
Phone: +49(391)4090-359; Fax: -93359
E-Mail: ulrich.raape@iff.fhg.de

Sven Overhage
Technische Universität Darmstadt
Fachbereich Rechts- und Wirtschaftswissenschaften
Wirtschaftsinformatik I
Hochschulstr. 1, 64289 Darmstadt
Phone: +49(6151)16-4309; Fax: -4301
E-Mail: overhage@bwl.tu-darmstadt.de

Stephan Sahm
itelligence AG
Westendstraße 16-22, 60325 Frankfurt am Main
E-Mail: stephan.sahm@itelligence.de

Dr. Andreas Schmietendorf
System- und Technologieentwicklung Bereich EP2
T-Systems Nova GmbH
Entwicklungszentrum Berlin
Wittestraße 30 N, 13509 Berlin
Phone: +49(30)43577-7531; Fax: -7507
E-Mail: andreas.schmietendorf@t-systems.com

Thorsten Teschke
Oldenburger Forschungsinstitut für Informatik-Werkzeuge und -
Systeme (OFFIS)
Escherweg 2, 26121 Oldenburg
Phone: +49(441)9722-216
E-Mail: thorsten.teschke@offis.de

Prof. Dr. Klaus Turowski
Lehrstuhl für Betriebswirtschaftslehre, insbesondere Wirtschafts-
informatik II
Universität Augsburg
Universitätsstraße 16, 86135 Augsburg
Phone: +49(821)598-4431; Fax : -4432
E-Mail: klaus.turowski@wiwi.uni-augsburg.de
URL: http://wi2.wiwi.uni-augsburg.de

