
Specifying Contractual Use, Protocols and Quality
Attributes for Software Components

Steffen Becker, Ralf H. Reussner, Viktoria Firus
Software Engineering Group, Department of Computing Science

University of Oldenburg, Germany
becker|reussner|firus@informatik.uni-oldenburg.de

August 28, 2003

Abstract

We discuss the specification of signatures, protocols (behaviour) and quality of service within soft-
ware component specification frameworks. In particular we focus on (a) contractually used compo-
nents, (b) the specification of components with variable contracts and interfaces, and (c) of quality of
service. Interface descriptions including these aspects allow powerful static interoperability checks.
Unfortunately, the specification of constant component interfaces hinders the specification of quality
attributes and impedes automated component adaptation. This is because, especially quality attributes
heavily depend on the components context. To enable the specification of quality attributes, we demon-
strate the inclusion ofparameterised contractswithin a component specification framework. These pa-
rameterised contracts compute adapted, context-dependent component interfaces (including protocols
and quality attributes). This allows to take context dependencies into account while allowing powerful
static interoperability checks.

1 Introduction

A specification framework for components has to provide information for several purposes, such as com-
ponent retrieval and assessment, component deployment, interoperability checks, automated component
adaptation, etc.

Current specification frameworks include signatures of the services offered by a component (e.g.,
UDDI [1]) or comprise additional metadata to classify components (easing the retrieval) and to specify
additional component attributes (such as quality) [2]. In any case, specification frameworks for com-
ponents include the “classic” interface models (signature-list based interface models), stemming from
object based middleware, such as the CORBA-IDL [3].

However, using object based interface models is not appropriate for software components for (at least)
three reasons:

1. Object interfaces model only provided services, not the required services. As argued in section 3,
the contractual use of components is only possible, if a component not only specifies the services
offered, but also the services required for proper operation. Interoperability checks between two
componentsA andB depend on the specification of both: the servicesA requires fromB and the
servicesB offers (toA, or to any other component).

2. Object interfaces include only signatures. Adding behavioural specifications and quality attributes
significantly increases the power of interoperability checks (i.e. the class of detectable errors).
Errors due to wrong service call sequences or insufficient quality of service can be detected (and
hence excluded) before using the software.

zahajoha
13



3. Objects have fixed interfaces. An object interface corresponds to the functionality implemented by
the object. This also holds for component interfaces and components. However, the deployment
context of a component is variable. It heavily influences (a) the functionality offered (or effectively
required) by the component, (b) the protocol and (c), most obviously quality attributes such as
performance or reliability [4, 5].

The contribution of this paper is a syntax for includingparameterised contractsinto the specification
framework of the working group 5.10.3 of the German Informatics society (G.I. e.V.) [2]. Parameterised
contracts (as introduced in [6] and formally discussed in [4, 7]) compute context dependent contracts
(i.e., provides- and requires-interfaces) and have been deployed for predicting the component reliability
in dependency of its context [7]. Further on this paper discusses the importance of tool support for
generating parts of the specifications proposed in this paper.

The structure of this paper is as follows. In the following section some prerequisites are mentioned.
The term “contractual use” of software components and its relation to interoperability checks is cleari-
fied in section 3. Parameterised contracts for signatures, protocols and quality attributes are introduced
afterwards. The importance of tool support for the specification of parameterised contracts is discussed
in section 5. After the presentation of related work (section 6), we conclude with a summary and the
discussion of open issues and future work in the last section.

2 Prerequisite

In contrary to the specification framework which we choose to base our specification tasks on, we differ-
entiate strictly between a component and its interfaces because of the possibility to differentiate between
the specification (interface) and the actual implementation. Those interfaces can be further divided into
two categories: provided interfaces and required interfaces.

The concepts presented in this paper rely on the separation of a component on the one hand side,
represented by the actual implementation of the component, and on the other hand on one or more inter-
faces specifying the services offered by the component to potential external users. As we will show in
section 4 the provides-interface is calculated dynamically during composition time. Therefore it should
be seen not tiedly coupled to the component as the same implementation may expose different interfaces
depending on the reuse context in which the component is deployed.

Further on it is important for our work to distinguish between provided and required interfaces. The
first describe services offered by a component, the later services needed by the component (i.e., services
from other components). Components connected to any interface of the component form theenvironment
of the component.

Although the need of requires-interfaces is obvious for static interoperability and substitutability
check (and well-known in literature [8, 9]), current component models like Sun’s EJB or Microsoft’s
.NET only contain provides-interfaces (one notable exception is CORBA 3.0). As we aim at provid-
ing tools to support those interoperability checks during component configuration we focus our work on
supplying the necessary specifications needed to perform this task.

A sub task of checking the interoperability of components is the matching of signature names. Imag-
ine one component producer calling a provided functionStart-
FundsTransfer and an other one simply calling itTransferFunds . We assume that the matching
of those names can be done by the means of the normative language specified on the terminological layer
of the components specification (e.g. if all the components use the same normative language) or it has to
be done manually during composition time by the configurator. Therefore we assume for the rest of this
paper that signature names have been matched already.

The specification framework we utilize in this paper already fulfils the stated requirements except
that a component may not have multiple interfaces. Interface specifications are separated from other
specification attributes by the use of a dedicated layer for this technical information. The provides-
interface is modelled on this layer as well as required services of external components. Parameterised
contracts specify a link between the required and provided interfaces.

zahajoha
14



Finally it is worth mentioning that we concentrate solely on the technical aspects of the component
specification. The impact of this work on the remaining layers of the specification framework is outside
the scope of this paper.

3 Contractual Use of Components and Interoperability Checks

Much of the confusion about the term ”contractual use” of a component comes from the double meaning
of the term ”use” of a component. The ”use” of a component refers often to the following:

1. the usage of a component during run-time. This is, calling services of the component, like calling
TransferFunds on a payment component.

2. the usage of a component during composition time. This is, placing a component in a new reuse-
context, like it happens when architecting systems, or reconfiguring existing systems (e.g., updating
the component).

Depending on the above case, contracts play a different role. Contracts are assumed to be known, as they
are well known in software engineering literature [10] and are also included in the regarded specification
framework on the behavioural layer. Instead of explaining the design by contract paradigm again the
essence is summarized here by the following sentence in a general form:

If the client fulfils the precondition of the supplier, the supplier will fulfil its postcondition.

Let’s get back to the two types of the ”use” of a component. It is clear, that the component plays the
role of a supplier in both cases. In order to specify contracts the pre- and postconditions as well as the
clients additionally need to be identified. The use of a component during run-time is obviously simply
calling the components services. Hence, the clients of the component are all the components calling a
service of the supplying component, which are all those components connected to the provides-interface
of the supplier. The pre- and postconditions involved in this case are simply those specified for the
affected service itself. Therefore it should be evident that this type of use is nothing different as using a
method. Thus this case should be called the use of acomponent serviceinstead of the use of acomponent
and is being disregarded in the following.

The other case of component usage (usage at composition time) is the actual important case, when
talking about the contractual use of components. This is the case, when architecting systems out of com-
ponents or deploying components within existing systems for reconfigurations. Consider a component
C which is acting as a supplier, and the environment acting as client. The component offers services to
the environment (i.e., the components connected toC ’s provides-interface(s)). According to the above
discussion of contracts, these offered services are the postcondition of the component, because it is that,
what the client can expect from a working component. Also according to Meyers above description of
contracts, the precondition is that, what the component expects from its environment (actually all com-
ponents connected toC ’s requires-interface(s)) to be provided by the environment, in order to enableC
to offer its services (as stated in its postcondition). Hence, the precondition of a component is stated in
its requires-interfaces.

Analogously to the above single sentence formulation of a contract, we can state:

If the user of a component fulfils the components’ required interface (offers the right envi-
ronment) the component will offer its services as described in the provided interface.

Note that checking the satisfaction of a requires-interface includes checking whether the contracts of
required services (the service contracts specified in the requires-interface(s)) are sub-contracts of the
service contracts stated in the provides-interfaces of the required components. A detailed description of
subcontracts can be found in [11, p. 573]. The contractual use of components enables interoperability
checks that can be performed when architecting new systems or replacing components during system
maintanance [4].

zahajoha
15



There is a range of formalisms used for specifying pre- and postconditions, defining a range of inter-
face models for components (see for extensive discussions and various models e.g., [12, 13, 14]). This
leads naturally to different kinds of contracts for components [15].

4 Parameterised Contracts

In daily life of component reuse, a component rarely fits directly in a new reuse context. For a component
developer it is hard to foresee all possible reuse contexts of a component in advance (i.e., during design-
time). One of the severe consequences for component oriented programming is that one cannot provide
the component with all the configuration possibilities which will be required for making the component
fit into future reuse contexts. Coming back to our discussion about component contracts, this means,
that in practice one single pre- and postcondition of a component will not be sufficient. Consider the
following two cases:

1. the precondition of a component is not satisfied by a specific environment while the component
itself would be able to provide a meaningful subset of its functionality.

2. a weaker postcondition of a component is sufficient in a specific reuse context (i.e., not the full
functionality of a component will be used). Due to that, the component will itself require less
functionality at its requires-interface(s), i.e., will be satisfied by a weaker precondition.

Hence, what we need are not static pre- and postconditions, butparameterised contracts[4, 14]. In the
first case a parameterised contract computes the postcondition which is computed in dependency of the
strongest precondition guaranteed by a specific reuse context (hence the postcondition is parameterised
with the precondition). In the second case the parameterised contract computes the precondition in depen-
dency of the postcondition (which acts as a parameter of the precondition). For components this means,
that provides- and requires-interfaces are not fixed, but a provides-interface if computed in dependency
of the actual functionality a component receives at its requires-interface and a requires-interface is com-
puted in dependency of the functionality actually requested from a component in a specific reuse context.
Hence, opposed to classical contracts, one can say:

Parameterised contracts link the provides- and requires-interface(s) of the same component.
They have a range of possible results (i.e., new interfaces).

Interoperability is a special case now: if a component is interoperable with its environment, its provides-
interface will not change. If the interoperability check fails, a new provides-interface will be computed.

Like classical contracts, parameterised contracts depend on the actual interface model and should be
statically computable. In any case, there’s no need for the software developer to foresee possible reuse
contexts. Only the specification of a bidirectional mapping between provides- and requires-interfaces is
necessary.

Resulting from this there is a need for the component supplier to specify the parameterised contract
in the components specification to enable anyone trying to reuse the component to determine the com-
ponents capabilities in a certain environment or to learn about the environment one has to provide to
get the needed functionality. To achieve this we propose in the following syntactical notations and the
according semantics which allows the specification of parameterised contracts in the initially mentioned
specification framework.

4.1 Signatures

The specification framework utilizes CORBA-IDL to specify interfaces as primary notation. As men-
tioned earlier the provided interface and a list of external services (required interface) are already in-
cluded in the specification. Therefore there is only the need to add information about the parameterised
contract of the component.

zahajoha
16



CORBA-IDL uses signature lists to specify the services of a component. In addition to the list of
provided services and the list of required services we need a mapping between every provided service
and the respective required services. This means that for each provided service a list of required external
services must be provided by the component developer or has to be extracted by code analysis tools.
When computing the actual provides-interface a service is only included in the provides-interface, if all
its required services are provided by the environment.

Hence, the specification on the interface layer of the utilized specification framework should be ex-
panded by the specification of a parameterised contract using the following syntax. The contract specifi-
cation can simply be appended to the IDL definition of the respective interface.

The syntax of the proposed specification can be taken from the following extended BNF:

ParameterisedContract ::= "parametrised contract {"
(ServiceEffectSpecification)+ "}"

ServiceEffectSpecification ::= SerivceID "{"
((ServiceIDExtern ", ")* ServiceIDExtern | "") "}"

ServiceID ::= Identifier
ServiceIDExtern ::= Identifier "::" Identifier

For the rest of this paper a payment component should be regarded which makes use of parameterised
contracts. The example component is capable of performing funds transactions either by requesting a
bank transfer or by the use of the customers credit card information. As a matter of fact, the supplied
credit card information needs to be validated before a transaction will be accepted. For this, a remote
component hosted by the credit card company is being called. As the usage of the validation component
is dependent on the payment of a monthly fee the component will not be available in every environment
for economic reasons. Further on the component needs a database connection for caching purposes.
The database connection is also needed for performing bank transactions because it contains a mapping
between the bank codes and the names of the respective banks. Nevertheless bank transactions can be
offered without the credit card validation services so that the component might still be useful in envi-
ronments not providing these services. Hence, the component producer decided to use a parameterised
contract to reflect this scenario in the components implementation in order to offer the component to a
larger group of customers.

Using this example the payment component and its parameterised contract may be specified as follows
on the interface layer of the specification framework.

interface Payment
{

void CreditCardPayment (in double amount, in CreditCardInformation info);
void BankTransferPayment (in double amount, in BankAccountInformation info);

}
interface extern
{

void CreditCardValidator::ValidateInformation (in CreditCardInformation info);
DBConnection DB::GetConnection ();

}
parameterised contract
{

CreditCardPayment { CreditCardValidator::ValidateInformation,
DB::GetConnection }

BankTransferPayment { DB::GetConnection }
}

It can be seen that the component only offers the serviceCreditCardPayment if the required
serviceCreditCardValidator::ValidateCardInformation is available as it is described
in the use case above. If no database is available the component is unable to offer any services any more.

4.2 Protocols

If the component producer specifies the interface of the component by the protocol the component pro-
vides, one has to specify (supported by existing tools) for each offered service which callsequencesare

zahajoha
17



required for its correct execution [14]. The component specification therefore has to include the so called
service effect specification which is a description of every possible control flow of a specific service call.
The requires-protocol is not stated explicitly. It is being calculated dynamically out of the service effect
information at configuration time as it is depending on the actual part of the provides-protocol being used
by the component’s clients [7]. Notice that the service effect needs to be a sequence of calls leading from
a defined start state to a defined end state, e.g. if there is the need for housekeeping functions they have
to be requested as well.

In general, protocols can be specified using two different approaches. One possibility is to specify all
permitted sequences of service calls, the other one is to describe which sequences are prohibited. Using
the first approach a description of all eligible call sequences has to be specified. The set of allowed call
sequences describes the provides-protocol of the component. If the second approach is being favoured
the specification needs to state under which conditions a preceding service call is prohibited.

As stated before we focus on the support of static interoperability checking. Hence, the used notation
for the component protocol has to enable the deployment of efficient algorithms for checking if a given
protocol is included in an other protocol. Although finite state machines are limited regarding their
expression power they enable inclusion checks to be evaluated efficiently. For this reason we use finite
state machines to express permitted call sequences for the rest of this paper.

There are additional reasons for preferring the specification of allowed call sequences over the speci-
fication of prohibited sequences. The reasons are summarized in the following enumeration.

1. Its easier for the producer of the component to specify the allowed order of service calls. In case
of incomplete specifications, a missing allowed order is not causing harm (although it restricts the
usability of the component). However, missing a prohibited sequence in a specification can lead to
unexpected behaviour.

2. Tools can be used to perform automatic analysis of message sequence charts (MSCs) or workflows
specified in similar languages. Further on it is possible to perform control flow analysis on the
provided byte code to extract the service effect specification as mentioned below.

3. As we aim at predicting Quality of Service properties of component configurations there is the
need to determine the call sequences the component performs on external component services.
This information is needed to estimate the probability of a call to a specific external service.

The following is a proposal for a syntax which may be used to specify the needed FSMs. An example
is depicted and specified in figure 1 where a required and a provided protocol was specified by the use of
UML state charts. States are specified by their identifier and the additional information if the state is a
start or a final state. Only one state is allowed to be a start state but any number of final states may be used.
For complexity reasons the automaton we expect to be supplied should be deterministic. Transitions are
described by their start and final state and the operation triggering the given transition.

FSM ::= "fsm { states { " (STATE ", ")* STATE
" } transitions { " TRANS* " } }"

STATE ::= IDENTIFIER STARTSTATE FINALSTATE
TRANS ::= "(" IDENTIFIER "," IDENTIFIER "," IDENTIFIER")"
STARTSTATE ::= " ISSTARTSTATE" | ""
FINALSTATE ::= " ISFINALSTATE" | ""

A component supplier has to specify the provided component protocol as given in figure 1. Addition-
ally one has to specify the service effect specification. We propose to use a FSM according to the given
grammar for these specifications as well.

4.3 Quality of Service

For extra-functional properties, the application of parameterised contracts is crucial. For example, one
cannot specify the timing behaviour of a software component as a fixed number. Much more, the tim-

zahajoha
18



/ VerifyCreditCardInformation

Logged In

/ Authenticate

/ Log off

fsm

{

  states

  {

    Start ISSTARTSTATE,

    DataQueried

    End ISFINALSTATE

  }

  transitions

  {

    (Start,

     VerifyCreditCardInformation,

     DataQueried)

    (DataQueried,GetConnection,

     End)

  }

}

fsm

{

  states

  {

    Start ISSTARTSTATE,

    LoggedIn,

    End ISFINALSTATE

  }

  transitions

  {

    (Start, Authenticate, LoggedIn)

    (LoggedIn,

     VerifyCreditCardInformation,

     LoggedIn)

    (LoggedIn, Log off, End)

  }

}

/ 
V

e
ri

fy
C

r
e
d

it
C

a
rd

In
fo

rm
a

ti
o

n


DataQueried

/ DB::GetConnection

Figure 1: An example required and provided protocol

ing properties of a component offered in its provides-interface is always a function of the environment’s
timing behaviour, as received at its requires-interfaces. The same argument holds for reliability as em-
pirically validated in [16]. By sequencing parameterised contracts of single components which form a
component architecture (without cyclic dependencies) one can compute the overall architectural proper-
ties by sequencing the single parameterised contracts and applying them (as a function) to the properties
of the underlying environmental where the system is deployed. (How to deal with multiple provides- or
requires-interfaces is discussed in detail in [14, 17].)

For Quality of Service specifications we assume the usage of QML [18] at interface level. QML adds
quality attributes to single services. There are two possible cases:

1. A component is depending on the services of other components. In this case the provides-interface
needs to be calculated from the actual selection of the components providing the needed services.
The specification should therefore provide enough information to allow the estimation of the qual-
ity attributes at the provides-interface if all required services are known.

2. A component is independent of other services or at least they are unknown at the time the system is
assembled (e.g. consider a WebService, internally it might consist of further components but that
is unknown or unchangeable by the configurator). In this case the needed quality attribute values
need to be determined by monitoring or other techniques. Remember that some kind of reference
architecture needs to be specified in this case as well to get comparable figures.

The specification in the second case is clear. It is simply an interface description in CORBA-IDL
with additional QML constructs specifying the needed quality attributes. In the first case we need a
specification of the service effect interface specified as FSM as described in section 4.2. Additionally we
now need probabilities describing - given a certain state - which transition might be performed next. As a
result the specification schema given in the previous section needs to be expanded by those probabilities
which results in the following modification to the BNF given before:

TRANS ::= "(" IDENTIFIER "," IDENTIFIER "," IDENTIFIER
"," PROBABILITY ")"

PROBABILITY ::= [0..1] AS DOUBLE

This information is sufficient for predicting accurately the components reliability [16].

zahajoha
19



5 Tool Support

As one can image the needed specifications for parameterised contracts might become quite large and
complex but fortunately a lot of information which needs to be specified can be generated by the support
of tools [19, 16].

As shown in figure 2 there are several possible sources for the specification data to result from.
An important aspect of any specification is to assure the consistency between the specification and the
specified object or component in our context. If the specification is generated from the used modelling
diagrams or even from the code of the component it’s easier to keep the specification and the actual
implementation in sync which gives an important cost benefit.

It also raises the question who is responsible for adding the specification data. The utilized specifi-
cation framework assumes that the component producer/vendor supplies the complete specification. In
this case the component is used as black-box. Tools which are able to analyse the code of a component
enable the user of the component to generate missing specifications. In this case we speak of grey-box
reuse as the client uses additional information (e.g. the code) to determine needed information.

Specification

Tool

Signature list specification

Protocol specification

Quality of service

specification

Design time information

Message sequence charts

Component byte code

Figure 2: Tool support for the generation of parameterised contract specifications

6 Related Work

We propose the use of FSMs to specify protocol and QoS information. Nevertheless as this approach
is limited in expression power, research has been done to find other ways of describing component be-
haviour. These descriptions have been expressed in different formalisms, each having specific advantages
and drawbacks [20, 21, 22, 23], such as linear-timed logic (LTL) ([24, 25]) or Petri-nets [26, 27]. When
considering finite call sequences, the use of (QP)LTL is equivalent to the FSM approach in term of power
of specification and the analysis one can perform [28, p. 1024]. However, when transforming LTL
expressions into finite state machines one has to consider the possible state explosion. The Petri-net ap-
proach is in general more powerful in modelling and the set of feasible analyses differs from finite state
machines. Successful research was also undertaken to make the state-machine approach more powerful
without loosing its possibilities of efficient analyses [29]. However, in general there is a trade-off be-
tween a formalism’s expression power and the set of feasible analyses which can be performed within
this formalism.

7 Conclusions

In this paper we focused on explaining what needs to be specified to add parameterised contracts to an
existing specification framework. We distinguished between three levels of specification data whereby
higher levels contain lower ones. On the lowest level we introduced signature list based specifications.
In a second step we added behavioural information by specifying protocols with finite state machines.

zahajoha
20



On the highest level Quality of Service attributes were added to the component specification. Finally, the
importance of tools in the highlighted context was emphasised.

Future work will be directed to the specification of additional Quality of Service attributes like safety,
fairness or liveness. The specification data will then also be used to predict the corresponding properties
of complete component architectures.

References

[1] The UDDI standardization consortium, “The UDDI homepage.” http://www.uddi.org.

[2] J. Ackermann, F. Brinkop, S. Conrad, P. Fettke, A. Frick, E. Glistau, H. Jaekel, O. Kotlar, P. Loos,
H. Mrech, E. Ortner, U. Raape, S. Overhage, S. Sahm, A. Schmieten, T. Teschke, and K. Turowski,
“Standardized specification of business components,”Memorandum of the working group 5.10.3,
Component Oriented Business Application Systems, 2002.

[3] Object Management Group (OMG), “The CORBA homepage.” http://www.corba.org.

[4] R. H. Reussner and H. W. Schmidt, “Using Parameterised Contracts to Predict Properties of Com-
ponent Based Software Architectures,” inWorkshop On Component-Based Software Engineering
(in association with 9th IEEE Conference and Workshops on Engineering of Computer-Based Sys-
tems), Lund, Sweden, 2002(I. Crnkovic, S. Larsson, and J. Stafford, eds.), Apr. 2002.

[5] R. H. Reussner, “Contracts and quality attributes of software components,” inProceedings of
the Eigth International Workshop on Component-Oriented Programming (WCOP’03)(W. Weck,
J. Bosch, and C. Szyperski, eds.), June 2003.

[6] R. H. Reussner, “Parameterised Contracts for Software-Component Protocols.” Presentation given
at Oberon Microsystems, Zürich, http://liinwww.ira.uka.de/∼reussner/zuerich00.ps.gz, Dec. 2000.

[7] R. H. Reussner, I. H. Poernomo, and H. W. Schmidt, “Reasoning on software architectures with con-
tractually specified components,” inComponent-Based Software Quality: Methods and Techniques
(A. Cechich, M. Piattini, and A. Vallecillo, eds.), no. 2693 in LNCS, pp. 287–325, Springer-Verlag,
Berlin, Germany, 2003.

[8] N. Wirth, Programming in MODULA-2. Springer-Verlag, 3rd Edition, 1985.

[9] J. Magee, N. Dulay, S. Eisenbach, and J. Kramer, “Specifying distributed software architectures,”
in Proceedings of ESEC ‘95 - 5th European Software Engineering Conference, vol. 989 ofLecture
Notes in Computer Science, (Sitges, Spain), pp. 137–153, Springer-Verlag, Berlin, Germany, 25–28
Sept. 1995.

[10] B. Meyer, “Applying “design by contract”,”IEEE Computer, vol. 25, pp. 40–51, Oct. 1992.

[11] B. Meyer,Object-Oriented Software Construction. Prentice Hall, Englewood Cliffs, NJ, USA, 2 ed.,
1997.

[12] B. Krämer, “Synchronization constraints in object interfaces,” inInformation Systems Interoper-
ability (B. Krämer, M. P. Papazoglou, and H. W. Schnmidt, eds.), pp. 111–141, Taunton, England:
Research Studies Press, 1998.

[13] A. Vallecillo, J. Herńandez, and J. Troya, “Object interoperability,” inObject Oriented Technology
– ECOOP ’99 Workshop Reader(A. Moreira and S. Demeyer, eds.), no. 1743 in LNCS, pp. 1–21,
Springer-Verlag, Berlin, Germany, 1999.

[14] R. H. Reussner,Parametrisierte Vertr̈age zur Protokolladaption bei Software-Komponenten. Logos
Verlag, Berlin, 2001.

zahajoha
21



[15] A. Beugnard, J.-M. J́eźequel, N. Plouzeau, and D. Watkins, “Making components contract aware,”
Computer, vol. 32, pp. 38–45, July 1999.

[16] R. H. Reussner, H. W. Schmidt, and I. Poernomo, “Reliability prediction for component-based
software architectures,”accepted at Journal of Systems and Software – Special Issue of Software
Architecture - Engineering Quality Attributes, 2002.

[17] H. W. Schmidt and R. H. Reussner, “Generating Adapters for Concurrent Component Protocol
Synchronisation,” inProceedings of the Fifth IFIP International conference on Formal Methods for
Open Object-based Distributed Systems, Mar. 2002.

[18] S. Frolund and J. Koistinen, “Quality-of-service specification in distributed object systems,” Tech.
Rep. HPL-98-159, Hewlett Packard, Software Technology Laboratory, Sept. 1998.

[19] G. Hunzelmann, “Generierung von Protokollinformation für Softwarekomponentenschnittstellen
aus annotiertem Java-Code,” diplomarbeit, Fakultät für Informatik, Universiẗat Karlsruhe (TH),
Germany, Apr. 2001.

[20] R. Campbell and N. Habermann, “The Specification of Process Synchronization by Path Expres-
sions,” inProc. Int. Symp. on Operating Systems, vol. 16 of Lecture Notes in Computer Science,
pp. 89–102, Springer-Verlag, Berlin, Germany, 1974.

[21] O. Nierstrasz, “Regular types for active objects,” inProceedings of the 8th ACM Conference on
Object-Oriented Programming Systems, Languages and Applications (OOPSLA-93), vol. 28, 10 of
ACM SIGPLAN Notices, pp. 1–15, Oct. 1993.

[22] D. Yellin and R. Strom, “Protocol Specifications and Component Adaptors,”ACM Transactions on
Programming Languages and Systems, vol. 19, no. 2, pp. 292–333, 1997.

[23] R. H. Reussner, “Enhanced component interfaces to support dynamic adaption and extension,” in
34th Hawaiin International Conference on System Sciences, IEEE, Jan. 3–5 2001.

[24] Z. Manna and A. Pnueli,The Temporal Logic of Reactive and Concurrent Systems. Springer-Verlag,
New York, USA, 1992.

[25] J. Han, “Temporal logic based specification of component interaction protocols,” inProccedings of
the 2nd Workshop of Object Interoperability at ECOOP 2000, (Cannes, France), June 12.–16. 2000.

[26] C. A. Petri, “Fundamentals of a theory of asynchronous information flow,” inInformation Process-
ing 62, pp. 386–391, IFIP, North-Holland, 1962.

[27] C. Ling and H. W. Schmidt, “A concept of time in workflow modelling and analysis.,” Tech. Rep.
2000/72, School of Computer Science and Software Engineering, Monash University, VIC 3168
Australia, June 2000.

[28] J. van Leeuwen,Formal Models and Semantics, Handbook of Theoretical Computer Science, vol. 2.
Amsterdam, The Netherlands: Elsevier Science Publishers, 1990.

[29] R. H. Reussner,Parametrisierte Vertr̈age zur Protokolladaption bei Software-Komponenten. Dis-
sertation, Fakulẗat für Informatik, Universiẗat Karlsruhe (TH), Germany, July 2001.

zahajoha
22




