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Abstract. The application of component based software engineering tech-
niques in safety critical technical systems has increased due to economic rea-
sons. This leads to the problem how to analyze the safety properties, because 
the failure types and their probabilities of especially COTS-components are 
potentially unknown. We propose to annotate components with encapsulated 
fault trees and basic failure probabilities. Based on this information and the 
structure specification an automated safety analysis is possible. 

1   Introduction 

In order to analyze the safety properties of a system the probability of a caused haz-
ard must be determined. Therefore, general fault trees are used [2,7,10,12,14,15]. 
These fault trees are logic formulas [10] that model the interrelationships between a 
potential system hazard and the basic faults that cause this hazard. This paper deals 
with the problem that basic faults and their probabilities are often unknown, espe-
cially for COTS-components. Thus, we propose to annotate each component in safety 
critical systems with a fault tree that models the failure behaviour of this component. 
Based on these fault trees a model-based evaluation of the safety properties is possi-
ble [6,14,15].  
The remaining part of this paper is organized as follows: section 2 introduces nota-
tions for the structure and interface specification of component-based software archi-
tectures. These notations serve as the basis for the construction and evaluation of 
encapsulated fault trees. In section 3 we present encapsulated fault trees and a meth-
odology to annotate COTS-components. Based on these annotations an automated 
safety analysis is described. In section 4 we illustrate the feasibility of the methodol-
ogy through an example that models a level crossing control system. Finally, we 
outline our conclusions and point out the directions for future work in section 5. 

2   Architecture Specification 

The architecture specification is the first simplified model of a system under devel-
opment [1]. It consists of the structure specification and a set of interface specifica-
tions. 
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2.1 Structure Specification 

The structure specification is the basic construction plan of a software system. It 
describes how the system is decomposed into smaller components and which of them 
interact during the runtime of the system. These structure specifications are basically 
divided into component-models and component-connector-models [7,9]  
Due to the popularity in industrial projects we use simple component-models for the 
structure specification [1,17,18]. They allow for the description of the software struc-
ture in terms of communicating components, which are also referred to as capsules 
[17] or as actors [9]. These components are concurrent objects specified by compo-
nent-classes. A component-class specification models either a flat software compo-
nent that cannot be refined further or a composite of finer, more granular compo-
nents. This leads to a recursive definition of component-classes that are modeled by a 
composition hierarchy, in which the top-level component describes the entire system. 
For the communication with its environment a component utilizes interface objects 
called ports. Between these ports point-to-point connections can be established that 
are used to send messages. If a message is sent directly to a component, the receiving 
port is called an end-port. To communicate with a component inside a hierarchical 
component special ports are used to forward a message from the outside of a compos-
ite component to an inner component. These ports are called relay ports.  
The simplified meta-model of a structure specification with a component-model is 
presented in figure 1. 

1

1

0..1 *

Structure
Specification

Protocol

* 0..1

0..1 *

*

0..10..1

* * 0..2

connection

obeys
conjugate

obeys

Component

connectionPort

connection

End-Port

Relay-Port

 

Fig. 1. Meta-model for a structure specification 

 

2.2 Interface Specification 

Interface specifications are used to model the black-box behaviour of components. 
More precisely, they specify a protocol with a set of valid message sequences [13]. 
Interface automata [5] may serve as a notation for an interface specification. They 
describe the causal order of messages or actions that are sent to or by the component. 
Interface automata are formally defined as follows [5]:  
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Definition 1: Interface automata 
An interface automaton is a 6-tuple , , , , ,init I O HS S E E E  T , where: 

− S  is a set of states 
− initS S⊆  is a set of initial states, with initS ≠ ∅  
− IE , OE  and HE  are mutually disjoint sets of input, output or internal actions.  
− T S E S⊆ × ×  is a set of steps, where an action Ia E∈ , Oa E∈  or Ha E∈  is 

enabled in the state v  if , ,v a v T′ ∈ . If a  occurs the next state is v′ . Based on 
the action type the step , ,v a v′  is called input, output, or internal step. 

For the specification of interface automata a typical graphical automaton notation [8] 
is used, where input, output, or internal actions are denoted with the postfix symbols 
?,! or ;. An example for an interface specification is given in figure 2. This compo-
nent can send a message y? to the environment and waits to receive the message x!. 
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Fig. 2. Interface specification with interface automata  

If two components interact via a point-to-point connection, they must be compatible. 
Therefore, a proof algorithm to check the compatibility of two interface automata is 
presented in [3].  
This proof algorithm determines first the set of shared actions between the two auto-
mata. Based on this set the two interface automata are compatible if none of the 
automata may produce an output action that is not accepted as an input action of the 
other automaton. To prove this the product automaton is constructed and it is 
checked that it does not contain illegal states as described above. 

3   Evaluation of Safety Properties with Encapsulated Fault Trees 

The basic idea to allow the evaluation of safety properties is to annotate each compo-
nent in an architecture specification with an encapsulated fault tree. Such an encap-
sulated fault tree describes the failure behaviour of the component [11]. It contains a 
set of outputs called output failure ports which define all concrete failure types that 
can be caused by the component. The output failures can be further caused either by 
an internal fault or by an external failure of the environment or another component. 
The external failures are specified with a set of input failure ports. The internal 
structure of an encapsulated fault tree is specified similar to normal fault trees [10] 
as a Boolean function. 

To evaluate the safety properties of the developed system the encapsulated fault 
trees of the contained components must be embedded in the encapsulated fault tree of 
the system [11]. Further, if the components exchange messages that can cause a 
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failure the input and output failure ports of the two encapsulated fault trees must be 
connected.  

In the following section, we first introduce the formal concept of an encapsulated 
fault tree. Then we propose an algorithm for the construction of an encapsulated 
fault tree based on the interface specification of hierarchical components. This algo-
rithm connects the input and output failure ports based on the architecture specifica-
tion. 

3.1   Formal Definition of an Encapsulated Fault Tree 

An encapsulated fault tree is a hierarchical directed acyclic graph [19] that can be 
defined as follows: 
Definition 2: Encapsulated Fault Tree 
An encapsulated fault tree EFT is a hierarchical directed acyclic graph (Digraph) 
that is described with the tuple , ,N P E , where: 
− N  is a set of nodes partitioned into internal failure events internN , input failure 

ports inN , and output failure ports outN  
− P  is a set of proxies that are partitioned into gate proxies GP  and sub-

component proxies SCP . These fault tree components are specified with a tuple 

, ,extern extern
in outN N CTS , where: 

− extern
inN  and extern

outN  are a set of external input and external output failure 
ports  

− CTS  is an assignment function which assigns to a proxy a logic formula if 

GP P∈  or an encapsulated fault tree if SCP P∈  
− E  is a set of directed edges which are associated to a source and a target node, 

where: 
− A source node can be an intern failure event internn N∈ , an input failure 

port inn N∈ , or an output failure port of a contained proxy . extern
outn P N∈   

− A target node can be an output failure port outn N∈  or an input failure port 
of a contained proxy . extern

inn P N∈  
− Further only one edge e E∈  can have an output failure port outn N∈  or an 

input failure port of a contained proxy . extern
inn P N∈  as target 

3.2   Annotation of Components with Encapsulated Fault Trees and Model 
Based Analysis 

To annotate a component with an encapsulated fault tree we utilize the correspond-
ing interface specification. Therefore, we assume that each input and each output 
action could be faulty. Thus, an encapsulated fault tree contains exactly as many 
outgoing failure ports as the number of output actions. The number of incoming 
failure ports depends on the number of input actions and the number of failures of 
the hardware platform or operating system, because these failures can also lead to a 
failure of the software component. Because an internal action or an internal fault in 
the software component may cause a failure, we specify them as internal failure 
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events in the encapsulated fault trees. Based on this methodology to each flat compo-
nent an encapsulated fault tree can be assigned modeling the causes of an outgoing 
failure. These encapsulated fault trees of the flat components serve as the basis for 
the construction of encapsulated fault trees for hierarchical components. Thus, we 
extend the meta-class of a component with an attribute FaultTree and an operation 
GenerateFaultTree that construct an encapsulated fault tree for a hierarchical 
component: 

+...()
+GenerateFaultTree()

+...
+FaultTree

«metaclass»
Component

 

Fig. 3. Extended meta-class for a component specification with encapsulated fault tress 

The operation GenerateFaultTree must be defined as follows:  
 
void GenerateFaultTree(){ 
 if (this.ContainsSubComponents?()){ 
  Component active, insert; 
  set<Component> open, close, neighbors; 
  set<Action> sharedaction; 
  Action activeaction; 
  this.FaultTree.Clear(); 
  open.Add(GetFirst(this.SubComponents)); 
  do{ 
   active=open.GetFirst(); 
   active.GenerateFaultTree(): 
   this.FaultTree.AddFaultTreeComponent(active.FaultFree); 
   neighbors=active.ExpandNeighbors ();  
   do{ 
    insert=neighbors.GetFirst(); neighbors.Remove(insert); 
    if (close.Contains?(insert)){ 
     sharedaction=GetSharedAction(insert,active); 
     do{ 
      activeaction = sharedaction.GetFirst(); 
      sharedaction.Remove(activaction); 
      qport= this.FaultTree.GetOutPort (activeaction,insert); 
      dport= this.FaultTree.GetInPort (activeaction,active); 
      this.FaultTree.Connect(qport,dport); 
     } 
     while(!sharedaction.isEmpty()) 
    } 
    else if (!open.Contains?(insert)){ 
     open.add(insert); 
    } 
   } 
   while(!neighbors.isEmpty()) 
   close.Add(activ); 
   open.Remove(activ); 
  } 
  while(!open.isEmpty()) 
 } 
} 
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This algorithm is basically a recursive graph search algorithm that systematically 
explores the contained components of a hierarchical component. Therefore, it uses 
the two component sets open and closed. The set closed contains all compo-
nents that have been already explored. The second set open contains the compo-
nents that are a neighbor of one component in the set closed and that must be 
explored in the future.  

To construct the fault tree a component from the set open is selected. It is de-
noted as the active component. For this component the operation Generate-
FaultTree is called. The constructed fault tree of the selected component is added 
to a current fault tree. Then the neighbors of the selected component are explored. If 
they are not in the set closed they are added to this set or otherwise the input or 
output failure ports of encapsulated fault trees must be connected with the input or 
output failure ports of the active components fault tree. Therefore, the set of 
shared action between the two components is determined and based on this set the 
corresponding input and output failure ports are connected. Finally, the active 
component is added to the closed set and thus all encapsulated fault trees of the 
components in the closed set are connected. 

4   Example 

To present the feasibility of our approach we chose to model a simplified version of a 
control system for a level crossing. This system is constructed with a COTS-
component that controls train signal actuators and gate actuators. To get the infor-
mation from the environment the control component utilizes a sensor that determines 
the state of the gates and a sensor that detects an arriving train and its progress 
through the level crossing. The following structure diagram illustrates the structure 
specification of the level crossing control system. 

LevelCrossingControl

<<actuator>>
Gates

<<sensor>>
GateSensors

<<actuator>>
TrainSignals

<<sensors>>
TrainSensors

LCGates LCGateSensors LCSignals LCTrainSensors

GOut

GLC

GSOut SOut TSOut

GSLC SLC TSLC

 

Fig. 4. Structure specification of the level crossing example 

 

For each component of the structure specification the behaviour is characterized with 
an interface automaton in Figure 5 and 6. In addition to this, the corresponding ports 
in the structure specification are annotated for each input and output message. 
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Fig. 5. Interface specifications of the sensors and actuators in the level crossing example 
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Fig. 6. Interface specification of the LevelCrossingControl component 

Based on the interface automata and our domain knowledge it is clear that the haz-
ard condition of the system is to signal green to the arriving train when the gates are 
open. This can be the case if either the system gives a “green” signal in the wrong 
situation or the system omits to set the signal “red” after the train has entered the 
level crossing section. To evaluate the probabilities of these events for every compo-
nent of our level crossing example an encapsulated fault tree is assigned. These fault 
trees are depicted for the sensors and actuators in figure 7. Notice that the encapsu-
lated fault tree contains an input or output failure port for each input or output action 
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in the corresponding interface specification. As an example, the Gates component 
contains an output failure port for the Open and Close action, which can be caused 
either by a failure of the hardware or by a failure of the OpenGates and CloseGates 
action. All other sensors and actuators are straightforward. They send faulty signals 
in case the corresponding external signal is faulty or a hardware failure occurs. 
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Fig. 7. Encapsulated fault trees for the sensors and actuators in the level crossing example 

The control component implies a much more complex fault tree that also contains 
internal failure events. The reason for these internal failure events can be a pro-
gramming error.  
In the example we identified three internal failure events that can lead to a system 
hazard. The first is the sending of the AllowPassage message in a wrong situation. 
This can be caused by a fault in the control flow. The second internal failure event is 
that the system reacts too late to a TrainEntered signal due to a missing of a per-
formance requirement. In this case, the DenyPassage signal would be sent too late 
and a second train could enter the level crossing control area. In case of the third 
internal failure event an omission of the DenyPassage signal may occur, too. For this 
event we assume that the TrainEntered signal is ignored. 
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Fig. 8. Encapsulated fault tree of the LevelCrossingControl component 
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Based on the encapsulated fault trees of the components the fault tree of the level 
crossing control system can be constructed with the GenerateFaultTree algo-
rithm. 
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Fig. 9. Composed fault tree for the level crossing example 

Based on these complete fault trees and the probability of the input failure ports the 
probability of the hazard can be calculated as for a normal fault tree. 

5   Conclusion and Future Work 

In this paper we proposed a technique for the annotation of COTS-Components with 
encapsulated fault trees. This technique utilizes interface specifications with inter-
face automata for the construction of fault trees for flat components. To allow the 
automatic and systematic construction of fault trees for a complete system an algo-
rithm is introduced. This algorithm constructs a fault tree for an encapsulated hierar-
chic component based on the structure specification and the encapsulated fault trees 
of the utilized components. The constructed fault trees allow evaluating the prob-
abilities of system hazards or components output failures. In addition to this, soft-
ware architects are enabled to systematically select appropriate components that 
fulfill the safety requirements.  

In view of our contribution and the overall problem we conclude with some items 
that remain for future work. First of all, the prediction of the probability of an inter-
nal fault must be improved. Up to now, predictions depend mostly on expert knowl-
edge. 

Second, there is a need for special failure types which model different aspects of 
failures that can be propagated between two components. In [6,16] the following 
failure modes (failure types) are suggested: 

- tl timing failures (reaction too late) 
- te timing failures (reaction too early) 
- v value failures 
- c failures of commission 
- o failures of omission 
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The usage of these failure types would extend the expressiveness of an encapsulated 
fault tree. Nevertheless, it would also increase the complexity of encapsulated fault 
trees, which must be handled in an appropriate way. 
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