
39

Developing Reusable Software Components
in CAM Environments

K. Bergner*, P. Bininda+, A. Blessing+, W. Daxwanger+, T. Krenzke+,
A. Rausch*, O. Schmid+, M. Sihling*

+ SEKAS GmbH, Perchtinger Straße 3, 81379 München, Germany,
Tel.: +49 (89) 74 81 34 -0, Fax: +49 (89) 74 81 34 -99,
E-mail:{bininda|blessing|daxwanger|krenzke|schmid}@sekas.de, URL: http://www.sekas.de

* Institut für Informatik, Technische Universität München, 80290 München, Germany,
Tel.: +49 (89) 28 92 26 85, FAX: +49 (89) 28 92 53 10,
E-Mail: {bergner|rausch|sihling}@in.tum.de, URL: http://www4.informatik.tu-muenchen.de

Abstract. This paper presents some of the experiences gathered in the ESSI Process Improvement
Experiment SEPIOR. The goal of SEPIOR is the systematic introduction of object-oriented and
componentware development methodologies in the application field of computer-aided manufac-
turing systems. The paper focuses on the adoption of these technologies in the software company
SEKAS. At the example of the development of an alarm management component the commercial,
technical, and human impacts are analyzed.

Keywords: Componentware, Reuse, CAM, Process Model, Alarm Management

1 Introduction

Recently, the componentware development paradigm has gained much attention (Szyper-
ski 1997). On one hand, approaches like COM (Chappel 1996) or JavaBeans (SUN 1997)
promise to boost the performance of application developers, creating a fast-growing market
for startup companies especially in the areas of GUI design and desktop computing. At the
other hand, vendors of large enterprise systems like SAP R/3 are planning to implement
modular versions of formerly monolithic software systems. In this experience report, we pro-
vide an example for the commercial, technical, and human implications of componentware in
the field of computer-aided manufacturing (CAM) systems. The context is provided by the
corresponding department of the company SEKAS (SEKAS 1999a) specialized on this appli-
cation domain.

The main purpose of CAM systems is to control the fabrication process from raw materials to
final products. This task requires the coordination of a variety of different activities, among
them the calculation of production schedules, the control of production lines, machines, and
transport facilities, but also the management of resources and tools, the gathering and logging
of machine data and the management and propagation of errors and alarms. Modern, highly
automated CAM systems can do all this with no or only minimal interaction by human users.

Currently, most CAM systems are custom-built programs relying on proprietary architectures
and techniques. Apart from some established real-time operating systems and program librar-
ies, standard components in this area are hardly available. A variety of different, non-standard

40

control devices and low-level programming interfaces exist. We expect, however, that this
will change in the medium-term due to the overall trend towards standardized interfaces. Es-
pecially the upcoming standards for real-time middleware (OMG 1999a) and production sys-
tem frameworks (IPA 1998) promise to enable the creation of configurable standard compo-
nents with well-defined interfaces that are reusable in different CAM applications.

In this report, we describe the considerations and experiences of SEKAS during the introduc-
tion of component-based development techniques. First, Section 2 describes the expected
strategic and commercial aspects of componentware, especially with respect to the involved
chances and risks. Section 3 then sketches a part of the development process for the adoption
and introduction of the new techniques. Based on this, Section 4 covers a practical application
of the described process with an example of the development of an alarm management com-
ponent. Finally, Section 5 gives some of the lessons learned during the process, concentrating
mainly on the human impacts of the adoption.

2 Strategic and Commercial Aspects

The development of CAM software is a very demanding task, as it requires knowledge in dis-
tributed system architectures, and the ability to implement fail-safe software for a variety of
different real-time controllers and devices. During the last years, SEKAS has gained profound
insight and experience from a variety of CAM projects. The acquired knowledge in the areas
of embedded systems, real-time software, and production control systems, as well as the
achieved standards of software engineering and quality management are seen as key compe-
tences of the company.

Despite this successful history, experience has also indicated some recurring problems, among
them the lack of standardized technical infrastructures. Due to this, even software realizing
basic functionality had to be developed from scratch. This pertains, for example, to the im-
plementation of several low-level communication libraries. The upcoming of standardized
infrastructures, protocols, and components will make such efforts unnecessary, allowing
SEKAS to accelerate system development and to concentrate on its core business. On the one
hand, this may shorten the time-to-market for the customers of SEKAS. At the other hand, it
may also leave more time for fulfilling customer requirements and implementing additional
features. Furthermore, the use of standard infrastructures will likely have a positive impact on
software quality and interoperability with other systems.

Another problematic issue is that the reuse level within SEKAS is currently very low. Essen-
tially, every production control system was built from scratch and tailored to the actual cus-
tomer requirements and technical infrastructure. Although the ability to adapt to a different
technical infrastructure is seen as a strength of SEKAS, there is also consensus that a higher
reuse level could raise the productivity considerably. If SEKAS succeeds in developing reus-
able, high-quality prefabricated components independent from a specific technical infrastruc-
tures, the effort for developing different versions of the same functionality for different infra-
structures will be fundamentally lower, reducing the development costs and raising the com-
petitiveness of SEKAS in customized software projects. To achieve this goal a clear separa-
tion between business-oriented and technical modeling has to be done, as the business-
oriented model represents the part of the components independent from a specific technical
infrastructure. Thus, it can be reused or even directly mapped to several infrastructures (Ber-
gner/Rausch/Sihling 1997).

41

Furthermore, in the long-term this strategy may enable SEKAS to gradually transform into a
component vendor, selling products on the evolving CAM component market. The shift from
custom development projects to products will of course require careful preparation, as it ne-
cessitates a variety of additional capabilities and organizational measures, for example with
respect to marketing and customer support.

The main risk with the sketched componentware strategy is the uncertainty about possible
pay-backs for the costly development of reusable components. To cope with that risk, a care-
ful analysis and selection of suitable components is necessary. Furthermore, most components
evolve from actual projects which usually focus on special requirements due to the general
lack of development resources and time. Thus, the decision to build a generic component has
to be backed up by adequate funding, resources, and organizational measures.

To further evaluate the described approach, SEKAS has decided to participate in a so-called
Process Improvement Experiment (PIE) of the European ESSI project (EU 1999). The specific
goals of the SEPIOR experiment (SEKAS 1999b) are “to enable reuse of pre-fabricated soft-
ware components by systematically introducing object-oriented technology, thus reducing
development time and costs for customer-specific solutions, and to increase the quality of
these solutions through reliable components forming building blocks for individual solutions”.
In a first step within SEPIOR existing parts of a CAM system should be refined and modeled
as a reusable platform independent component. A team consisting of in-house domain experts
and experts in object-oriented programming was formed. Additionally, experts in object-
oriented methodologies and componentware techniques from the Technische Universität
München collaborated in the SEPIOR team as consultants and coaches.

3 Process Model

In this section we present interesting aspects of an architecture-centric, iterative, incremental,
and reuse-driven software design process (partly similar to the Rational Unified Process
(Kruchten 1999) as successfully integrated within the SEKAS methodology. The main goal is
the elaboration of a component-based architecture flexible enough to be adapted to and reused
in numerous applications of a common domain. An software architecture of this kind mainly
consists of two parts: a set of components and an underlying common framework gluing those
components together (Broy et al. 1997). A framework provides standardized interfaces,
classes and communication mechanisms and thus allows the components to interact with each
other in the scope of a predefined structure (Pree 1997). Especially, components within this
framework serve as a point of adaptation and configuration and can be conveniently adjusted
or even be replaced without touching other components within the framework.

The presented process is divided into four essential activities:

1. Identify components and describe their functionality.

2. Specify component requirements, model component interfaces, and design the interactions
between them.

3. Design the underlying, common framework.

4. Design the technical architecture and select a corresponding infrastructure.

Usually, these activities are interleaved and performed in an iterative and incremental fashion.
After the design of the first component, for example, the developer might specify interaction

42

patterns and continue with the next component. After a couple of iterations, this process re-
sults most likely in a stable specification of components and their interfaces. Now, a first
prototype containing the components and the underlying common framework is to be imple-
mented. Finally, the concrete technical architecture and the infrastructure are selected and the
prototype is re-implemented correspondingly. At this stage, non-functional requirements can
be tested with the prototype.

Note the clear separation of business aspects and technical activities (second and fourth re-
spectively) in this process. This is an essential requirement as stated in Section 2.

3.1 Identify and Describe Components

Best practice for the decomposition of a system into a set of interacting components is a com-
bination of the classic top-down and bottom-up processes. On one hand, an iterative refine-
ment of the system’s design leads to a set of components which best fit the given, specific
requirements. On the other hand, a bottom-up approach allows to consider possibly standard-
ized solutions from a component market thus emphasizing software reuse. The ideal outcome
would be a decomposition into two sets of components. The first one refers to components
which are to be developed from scratch as they are strongly related to the core competences of
the software company. Similarly, the second set are components from third-party solution
providers which are to expensive to be developed on one’s own.

The most relevant information required in this activity are the core competences of the com-
pany. Results from a thorough analysis of preceding projects help in finding the dominant
knowledge which makes the difference to competitors. Core competences or functionalities
which have been programmed over and over again are dominant candidates for components to
be developed on one’s own.

Larger enterprises often concentrate these efforts in form of special “reuse departments”
which canalize demands from the different departments, forwarding component requests to in-
house component “vendors”. This virtual in-house market facilitates the decision whether
components with similar functionality are needed by several projects, thus suggesting the im-
plementation of an abstract, configurable component. This decision requires great care - if the
efforts to adapt a very generic component to the actual needs are too high, it won’t be reused.

By and large, the result of this step is the “big picture” of the domain under consideration.
This contains a set of components to be developed, a set of components to be bought and inte-
grated, and a raw description of their functionality and interaction in prose or by graphical
description techniques like, for instance, the Unified Modeling Language (Oesterreich 1999;
OMG 1999).

3.2 Specify Component Requirements, Model Interfaces and Interactions

After the components to be developed have been identified, a detailed analysis of each com-
ponent’s requirements and its relations to other components is carried out. This involves mod-
eling the interfaces of all involved components using common description techniques as well
as performing walk-throughs for selected use cases. Another main goal of this step is to bal-
ance the level of abstraction of the component. If it is too high, a lot of work is needed for
adaptation; if it is too low, the component is not likely to be reused in other projects. There is
no common solution for this problem. It depends on the experience of the developer to find

43

the right level of abstraction.

The results of this activity incorporate a set of use cases a component is involved in as well as
specifications of the behavior and all of its interfaces. For this reason, the usage of popular
graphical description techniques as offered by the UML is common practice.

3.3 Design Framework

The activities described above result in a set of abstract, business-oriented components. For
most applications, this is not sufficient – they also need some common facilities that cannot be
assigned explicitly to a single business-oriented component. This pertains, for example, to
foundation classes that are used by a number of cooperating components, or to base mecha-
nisms like persistence management. Furthermore, the framework may encompass certain do-
main-specific guidelines that have to be observed by all components or interfaces. This step is
especially critical as the framework itself is not supposed to be changed during runtime. Thus,
the services needed and provided by the framework must be defined at the appropriate level of
abstraction. The main result is a class diagram specifying the framework and implementation
classes for the components under development.

3.4 Design Technical Architecture

The last main activity is to capture the requirements for the actual technical architecture, and
to select a corresponding technical infrastructure consisting of suitable middleware compo-
nents. Usually, the separation of business-oriented and technical design leads to a clear archi-
tecture, as technical details of a certain infrastructure cannot influence the business-oriented
parts. Furthermore, this approach allows to reuse a certain business-oriented design for multi-
ple technical infrastructures.

The vision of the technical architecture design is, that designers annotate the business-oriented
model with technical markers, like “persistent” or “multi-threaded” and then - using a prede-
fined mapping between marker types and technical infrastructure - generate the implementa-
tion of the system using appropriate tools. Currently, this is still a vision. But a couple of tools
already got quite close to this goal. For instance, the tool AutoMate generates from class dia-
grams a complete implementation for a CORBA and object-oriented database environment
(Bergner/Rausch/Kuhla, 1998).

4 Application Example: Alarm Management

This section demonstrates the application of the process model described in the previous sec-
tion at the example of an alarm management system component (AMS). This component is
currently specified and implemented at SEKAS to serve as a reusable building block in future
projects.

4.1 Identify and Describe Components

In several workshops and design sessions at SEKAS a total of seven CAM projects were ana-
lyzed as a starting point. They resulted in the identification of some overall component candi-
dates whose functionality was needed in multiple projects. Together, they represent a large
portion of the company’s core competences. Figure 1 shows a simplified, highly abstracted

44

version of the identified components.

In our model, an overlaying ProductionPlanningAndControlSystem (PPCS) component deals
with the commercial aspects of the respective fabrication process, for example, product pric-
ing and customer orders. Product information for the necessary planning, scheduling, and op-
timization of production tasks is available from the ProductManagement component (PM).
The obtained information constitutes part of the individual production plan for a certain prod-
uct. Furthermore, a production plan includes a bill of materials, production steps, machine
setups, and so on. The PPCS delegates the computed set of optimized tasks to the LineCon-
trolSystem component (LCS) in form of orders for production lines and machines.

The LCS initiates and subsequently controls the production for a production line order. De-
pending on the degree of automation, the LCS may control the machines with or without using
the Resource Management System component (RMS).

All products manufactured by the LCS are managed and tracked by the PM throughout their
whole lifecycle. The LCS usually not only collects the product tracking data, but gathers also
machine and production data. Finally, the Alarm Management System component (AMS)
serves as a kind of global service and may thus be used by any component. The AMS is used
to inform users about system errors or problems occurring during the production process.

The AMS is a suitable component for demonstrating the approach introduced in the previous
section due to its importance–the corresponding functionality was necessary in five of the
seven analyzed project. Furthermore, to the knowledge of the authors there is currently no
AMS component commercially available that fulfills the requirements comprised in the sub-
sequent section.

Figure 1. High-Level Component Architecture of a CAM System

4.2 Specify Component Requirements, Model Interfaces and Interactions

In order to emerge an appropriate design for a reusable AMS component, it is necessary to
define the requirements:

1. No loss of error information: Error information sent to the AMS must not be lost. Under

ProductManagement
PM

IProducts IProductionPlans LineControlSystem
LCS

IProduce
ResourceManagement

System
RMS

IResourceInformation

IResourceCommands

ProductionPlaning
AndControlSystem

PPCS

IProductData

IProductionTasks

AlarmManagementSystem
AMS

IAlarms

45

all circumstances, at least a certain minimal error handling (e.g. tracing) must be ensured.

2. Asynchronous error handling: The process producing errors may neither be blocked nor
may it suffer from any overhead imposed by error management.

3. Freely configurable error handling: Error handlers may be configured to handle a certain
error or even a whole class of errors at a specific error level. Moreover, the definition of
escalation strategies is possible: when the handling of an error at a certain error and esca-
lation level fails, the systems switches to an increased escalation level with another error
handling strategy (possibly employing different handlers). Dynamic configuration allows
for a simple integration of new alarms with new handling strategies even at runtime.

4. Platform independence: The AMS will be used by a variety of different systems, each
even running on a different platform. To achieve reusability, the AMS must be designed
platform-independent.

5. Transparent API: The AMS interface should be shallow in order to be easily connectable
to specific systems. Essentially, an interface for sending errors is sufficient–no further
knowledge about the configuration and the possible error handling should be necessary.

6. Error classification: The AMS must allow for a context-sensitive classification of an error
according to its severity. Furthermore, a reclassification in a different context must be pos-
sible.

The architecture of the AMS as shown in Fig. 2 reflects these requirements. The AMS handles
errors asynchronously to the external system according to a configured strategy. Thereby, one
or more handlers may be instructed to handle the error (for example, handlers for error tracing,
printing, displaying error information on a pager, and so on). As there may be several AMS
components, each serving another manufacturing area, it is possible to pass error information
between different AMS components. A configuration facility may be used to configure the
AMS with the specific error handling strategies.

The AMS component only offers two interfaces: one to connect the external system with the
AMS (handle) and one to configure the alarm handling strategies with the help of a configu-
ration tool (configure). The external system, acting as a client of the AMS, sends the produced
errors to the AMS by using the handle interface. Optionally, the external system is able to log
the error by itself, using the interface to a Logging component. The AMS instructs the differ-
ent device handlers by using the appropriate device handler interface.

Figure 2: Architecture of the AMS

External
System 1

Error

Logging

Alarm
Management

System
AMS 1

Alarm
Management

System
AMS 2

External
System 2

Error

Logging

configure

handle

handle

configure

Configuration Tool

Configuration Tool Handler
Device 1

Handler
Device n

Handler
Device 2

46

4.3 Design Framework

A CAM system is by its nature a distributed system. There are components running on a wide
range of platforms distributed throughout a factory. The platforms include, for example, em-
bedded real-time systems on production machines, real-time systems for production control,
database systems, and Windows workstations.

Every component in the CAM system is a potential client of an alarm management system,
since every component can encounter events that need attention. However, it is not desirable
to have alarm handling done locally on every machine. An AMS should be manageable as a
single instance and should marshal access to central resources such as beepers and phone
lines.

Therefore, we need a practicable framework for the clients of the AMS, which is a part of the
overall framework gluing together the components of a CAM system. Figure 2 reflects the
system dependent framework of the AMS which can be utilized by any external system. An
external system produces an error object and has the possibility to log the error information to
a file. This error object may then be given to the AMS under use of the handle interface. As
described above, the AMS then handles the error asynchronously to the external system.

4.4 Design Technical Architecture

As stated above, various components throughout a factory must be able to access the AMS.
To enable communication, an appropriate infrastructure has to be established. The traditional
approach within most CAM systems is to use TCP/IP sockets with a proprietary protocol in
order to handle the communication between the components. This approach implies high de-
velopment efforts and does not encourage reuse. The alternative is to use a standard infra-
structure technology. We have chosen CORBA, because it is platform and language inde-
pendent and widely available. Consequently, the AMS component offers its functionality via
CORBA interfaces to its clients. The communication of the AMS component with its device
handlers also employs CORBA.

CORBA was chosen over DCOM because it is an open standard with implementations avail-
able for all relevant platforms, while DCOM is primarily available on the Windows platform.
In addition, production control and industrial applications are a traditional domain of
CORBA, while DCOM focuses primarily on desktop components. For a detailed comparison
of DCOM and CORBA see (Chung et al. 1999).

As stated previously, the CORBA interface of the AMS is language independent. Therefore,
clients can communicate with the AMS regardless of the language in which it is implemented.
However, as error handling is an integral part of the implementation of any component, lan-
guage specific extensions of the framework are necessary. These framework extensions will
be made available for C++ and Java, which allow clients to handle errors and to trace infor-
mation with minimal programming effort.

The anticipated performance bottleneck of the AMS is the network communication between
the client component and the AMS on the one hand, and between AMS and the alarm devices
on the other hand. Therefore, the efficiency of the programming language used to implement
the AMS is not an major issue. Consequently, we have chosen to implement the AMS in Java
although we expect inferior performance compared to other programming languages such as
C++. With Java, we expect a significantly shorter development time than in C++, especially

47

since memory management and the integration with CORBA are much less complicated.

5 Lessons Learned

5.1 Human Impacts

As mentioned above, the first step towards component development was the domain analysis
of the CAM domain. Although the participating staff at SEKAS already had basic training in
OO analysis and design, it was not easy to adapt this rather abstract knowledge to the concrete
request to do a domain analysis. The training has to be complemented by suitable guidelines
for the development process. Otherwise, the developers will be unsure where to start the
analysis and whether the analysis covers all critical sections later on. Coaching from OO and
componentware experts should be employed until the practical use of the learned techniques is
adopted by the team members.

For the domain analysis it is necessary to have experts for the problem domain and experts for
OO techniques. According to our experience, they do not need to be the same people.

We also learned that the ideal size of an analysis team is three to five members. One or two
members eventually forget critical details, more than five members sometimes linger in end-
less discussions, drifting away to technical details instead of concentrating on the domain
problems. We also discovered that it is necessary to cut such discussions from time to time,
and to restart them with a smaller team. These results have an organizational impact on the
planning of the person power for future design activities.

5.2 Technical Impacts

During the whole design and implementation phase of the components a CASE-Tool with
UML-support and sophisticated code generation was used. We think it is not practical to make
the design without such a tool. It is also necessary to use the tool during implementation, be-
cause an iterative development cycle is only possible if the way from design to implementa-
tion and back to design is feasible. That implies that the tool supports good synchronization
mechanisms between the source code and the design model and good code generation possi-
bilities. In fact, code generation and synchronization really shortens the implementation time
and makes the design more robust, because the design is not hidden in source code and so the
developer is prevented from destroying good design during an implementation enthusiasm
phase.

We also found out, that a CASE-Tool using UML helps very much in providing documenta-
tion and keeping it up to date. The reason for this is, that the UML diagrams are easy to under-
stand and are kept up to date, using the synchronization techniques of our tool.

During design and development we experienced that the more time we spent to design the
important parts, the less time was needed for implementation and the more readable and sim-
ple was the emerging source code.

However, it is not necessary to first design every detail of the component and then proceed to
implementation. On the contrary, it is sometimes necessary to make a detailed design of the
important parts and a very rough design of the less important parts, to implement the system
prototypically, and to try whether the design works. Then one can go back to design and spec-

48

ify the missing parts. If it is found that there are conceptual errors in the design, it will cost
less time to make corrections according to this approach.

5.3 Result Measurement

The assessment of the degree of reusability is done based on a so-called base line project. The
base line project comprises selected parts from an actual project of a representative SEKAS
customer from the CAM environment. The customer project included the integration of dis-
tinct manufacturing lines, transport, logistics and test into an continuous production process.
Customer acceptance was reached in May 1999.

The effect of reuse is assessed by comparing the effort needed for the original development of
the base line project (delivered to the customer) and the effort needed for the redefinition of
the base line project using the newly constructed components and their framework. The goal is
to reduce development effort by at least 20%. An analogous comparison is drawn regarding
warranty and maintenance efforts. These should be reduced from 5% of the original develop-
ment costs to 2.5 %.

The introduced measurement avoids the need for prototypical projects, but takes some time to
get a statistical relevant result for maintenance efforts.

The expected commercial impact cannot be consolidated at the moment, but will be assessed
at the end of the project. However, the authors are confident in the success of SEPIOR, be-
cause the lessons learned so far are more than positive.

6 Conclusions

Although the process improvement experiment SEPIOR is not completed the time this paper
is written, some preliminary conclusions can be drawn. The conclusions mainly summarize
the technical and human aspects in introducing component based software development.

Despite the initial expense of introducing component based development, the reuse aspect
permanently spreads at SEKAS, indicating the rising acceptance of these techniques and
methodologies. One of the major impediments is to create continuous stimuli to foster the
development of reusable components on the one hand, and to emphasize the deployment of
the components on the other hand. The primary risk of management activities inciting these
stimuli is that developers overshoot. A natural balance between developing reusable compo-
nents and specifically customized modules or prototypes has to be found. This premises a
skilled developer, who not only shows technical excellence and experience but also possesses
common sense. Thus, in the authors opinion the management activities should emphasize on
continuous professional technical and social training of the developing staff instead of finan-
cial or non-financial incentives.

The major technical issue is the development of a framework for components both during
component development and component deployment. This topic is most important for com-
ponent vendors. The component framework has to include aspects such as communication,
configuration, persistency and distribution. Additionally, a framework has to comprise testing
and debugging aspects that even work with no introspection possibilities based on the code of
the components.

49

References
Bergner, K.; Rausch, A.; Kuhla, K.: Schnelle Schichten – Transparenter Zugriff auf ODBMS über CORBA. iX

No. 11, heise Verlag, 1998.

Bergner, K.; Rausch, A.; Sihling, M.: Using UML for Modeling a Distributed Java
Application. Technische Universität München, technical report TUM-I9735, 1997.

Broy M.; Denert E., Renzel K., Schmidt M.: Software Architectures and Design Patterns in Business Applica-
tions. Technische Universität München, technical report TUM-I9746, November 1997.

Chappel, D.:: Understanding ActiveX and OLE. Microsoft Press, Redmond 1996.

Chung, P. E.; et al.: DCOM and CORBA Side by Side, Step by Step, Layer by Layer, http://www.bell-
labs.com/user/emerald/dcom_corba/Paper.html, Download 1999-10-06

EU (Ed.): Homepage of the European Systems and Software Initiative, http://www.cordis.lu/esprit/src/stessi.htm,
1999.

IPA (ed.): Computer Integrated Manufacturing Framework. Fraunhofer Institut für Produktionstechnik und Au-
tomatisierung, http://semi-tf-cim-framework.ipa.fhg.de/, Download 1998-12.

Kruchten, P.: The Rational Unified Process – An introduction. Addison Wesley Ltd., May 1999.

Oesterreich, B.: Objekt-Orientierte Softwareentwicklung mit der Unified Modeling Language. Oldenburg Verlag,
1997.

 SEKAS GmbH (ed.): SEKAS GmbH Homepage, http://www.sekas.de/,1999.

SEKAS GmbH (ed.): Homepage SEPIOR project, http://www.sekas.de/english/research.html, 1999.

Szyperski C.: Component Software – Beyond Object-Oriented Programming. Addison Wesley Ltd., 1997.

OMG (ed.): Real Time CORBA Specification,. Object Management Group, 1999.

OMG (ed.): Unified Modeling Language Specification, Version 1.3, Object Management Group,
http://www.omg.org/, 1999.

Pree, W.: Komponenten-basierte Softwareentwicklung mit Frameworks. dpunkt Verlag, Heidelberg, 1997.

Sun Microsystems (ed..): JavaBeans: JavaBeans API Specification 1.01. Sun Microsystems, Mountain View
1997.

50

